
CHAPTER 5
PROGRAMMING THE COMPUTER

5.1 An Overview of Computer Programming Languages
Basically, Human beings cannot speak or write in computer

language. Likewise, computers cannot speak or write in human
language therefore, an intermediate language had to be devised to
allow people to communicate with the computer. These
intermediate languages, known as programming languages, allow
a computer programmer to direct the activities of the computer.
These languages are structured around a unique set of rules that
dictate exactly how a programmer should direct the computer to
perform a specific task. With the powers of reasoning and logic of
human beings, there is the capability to accept an instruction and
understand it in many different forms. Since a computer must be
programmed to respond to specific instructions, instructions
cannot be given in just any form. Programming languages
standardize the instruction process.

The rules of a particular language tell the programmer how the
individual instructions must be structured and what sequence of
words and symbols must be used to form an instruction.
Generally, a computer instruction has two parts:

• operation code
• operand

The operation code tells the computer what to do such as add,
subtract, multiply and divide. The operands tell the computer the
data items involved in the operations. The operands in an
instruction may consist of the actual data that the computer may
use to perform an operation, or the storage address of data.
Consider for example the instruction: a = b + 5. The '=' and ‘+’ are
operation codes, while ‘a’, ‘b’ and ‘5’ are operands. The 'a' and 'b'
can be storage addresses of actual data while ‘5’ is an actual data.

Some computers use many types of operation codes in
their instruction format and may provide several methods, for
same thing. Other computers use fewer operation codes, but have
the capacity to perform more than one operation with a single
instruction. There are four basic types of instructions namely:

(a) input-output instructions
(b) arithmetic instructions
(c) branching instructions and
(d) logic instructions
An input instruction directs a computer to accept data from

a specific input device and store it in a specific location in the
store. An output Instruction tells a computer to move a piece of
data from a storage location and record it on the output medium.
All basic arithmetic operations can be performed by the computer.
Since arithmetic operations involve at least two numbers, an
arithmetic operation must include at least two operands.

Branch instructions cause the computer to alter the
sequence of execution of instruction within the program. There
are two basic types of branch instructions; namely unconditional
branch instruction and conditional branch instruction. An
unconditional branch instruction or statement will cause the
computer to branch to a statement regardless of the existing
conditions. A conditional branch statement will cause the
computer to branch to a statement only when certain conditions
exist. Logic instructions allow the computer to change the
sequence of execution of instruction, depending on conditions,
built into the program by the programmer. Typical logic operations
include: shift, compare and test.

5.2 Types of Programming Language

The effective utilization and control of a computer system
is primarily through software. There are different types of

software that can be used to direct the computer system. System
software directs the internal operations of the computer, and
applications software allows the programmer to use the computer
to solve user made problems. The development of programming
techniques has become as important to the advancement of
computer science as the developments in hardware technology.
More sophisticated programming techniques and a wider variety
of programming languages have enabled computers to be used in
an increasing number of applications.

Programming languages, the primary means of human-
computer communication, have evolved from early stages where
programmers entered instructions into the computer in machine
language (binary/hex) to more structured languages more similar
to human language. Computer programming languages can be
classified into the following categories:

(a) Machine language
(b) Assembly language
(c) High level language
(d) Very high level language

5.2.1 Machine Language

The earliest forms of computer programming were carried
out by using languages that were structured according to the
computer stored data, that is, in a binary number system.
Programmers had to construct programs that used instructions
written in binary notation, 1 and 0. Writing programs in this
fashion is tedious, time-consuming and susceptible to errors.

Each instruction in a machine language program consists, as
mentioned before, of two parts namely: operation code and
operands. An added difficulty in machine language programming is
that the operands of an instruction must tell the computer the
storage address of the data to be processed. The programmer

must designate storage locations for both instructions and data as
part of the programming process. Furthermore, the programmer
has to know the location of every switch and register that will be
used in executing the program, and must control their functions by
means of instructions in the program.

A machine language program allows the programmer to
take advantage of all the features and capabilities of the computer
system for which it was designed. It is also capable of producing
the most efficient program as far as storage requirements and
operating speeds are concerned. Few (if not none) programmers
today write applications programs in machine language. A
machine language is computer dependent. Thus, an IBM machine
language program will not run on NCR machine, REC machine or
ICL machine. Machine languages are the First Generation
(computer) Language (1GL).

5.2.2 Assembly (Low Level) Language

Since machine language programming proved to be a
difficult and tedious task, a symbolic way of expressing machine
language instructions was devised. In assembly language, the
operation code is expressed as a combination of letters rather
than binary numbers, sometimes called mnemonics. This allows
the programmer to remember the operations codes easily than
when expressed strictly as binary numbers.

The storage addresses or locations of the operands are
expressed as a symbol rather than the actual numeric address.
After the computer has read the program, operations software are
used to establish the actual locations for each piece of data used
by the program. The most popular assembly language used to be
the IBM Assembly Language.

Because the computer understands and executes only
machine language programs, the assembly language program must

be translated into a machine language. This is accomplished by
using a system software program called an assembler. The
assembler accepts an assembly language program and produces a
machine language program that the computer can actually
execute. The schematic diagram of the translation process of the
assembly language into the machine language is shown in Fig.5.1.
Although, assembly language programming offers an improvement
over machine language programming, it is still an arduous task,
requiring the programmer to write programs based on particular
computer operation codes. An assembly language program
developed and running on IBM computers would fail to run on ICL
computers. Consequently, the portability of computer programs
across different vendors/manufacturers of computers was not
possible with assembly language. The low level languages are
generally described as Second Generation Languages (2GL).

Fig. 5.1: The assembly language program translation process

5.2.3 High Level Language

The difficulty of programming and the time required to
program computers in assembly languages and machine languages
led to the development of high-level languages. These symbolic
languages sometimes referred to as problem oriented languages
reflect the type of problem being solved rather than the computer
being used to solve it. Programming in machine and assembly
language is machine dependent but high level languages are
machine independent. In other words, a high-level language
program can run on a variety of computers.

Store

Low Level
Language

Assembler

Machine
Language
Program

Operating
System

While the flexibility of high level languages is greater than
that of machine and assembly languages, there are close
restrictions in exactly how instructions are to be formulated and
written. Only a specific set of numbers, letters, and special
characters may be used to write a high level program and special
rules must be observed for punctuation. High level language
instructions do resemble English language statements and the
mathematical symbols used in ordinary mathematics. Example of
high level programming languages are FORTRAN, BASIC, COBOL,
Pascal, ALGOL, ADA, PL/I, C, C++, C#, Java among others. The
schematic diagram of the translation process of a high level
language into the machine language is shown in Fig. 5.2. The high
level languages are, generally, described as Third Generation
(Computer) Language (3GL).

Fig. 5.2: The high level language program translation process

5.2.4 Very High Level Language

The very high level language generally described as the Fourth
Generation (computer) Language (4GL), is an ill-defined term that
refers to software intended to help computer users or computer
programmers to develop their own application programs more
quickly and cheaply. A 4GL, by using a menu system for example,
allows users to specify what they require, rather than describe the
procedures by which these requirements are met. The 4GL
software does the detailed procedure by which the requirements
are met, which is transparent to the users.

Store

High Level
Language
Program

Compiler/
Interpreter

Machine
Language
Program

Operating
System

Programming aids or programming tools are provided to help
programmers do their programming work more easily. Examples
of programming tools are:

• Program development systems that help users to learn
programming in a powerful high level language. Using a
computer screen and keyboard directed by an interactive
program, users can construct application programs.

• A program generator or application generator that assists
computer users to write their own programs by expanding
simple statements into program code.

• A database management system
• Debuggers which are programs that help computer users to

locate errors (bugs) in the application programs they write.
A 4GL offers the user an English-like set of commands and

simple control structures in which to specify general data
processing or numerical operations. A program is translated into a
conventional high level language such as COBOL, which is passed
to a compiler. A 4GL is, therefore, a non-procedural language. The
program flows are not designed by the programmer but by the
fourth generation software itself. Each user request is for a result
rather than a procedure to obtain the result. The conceptual
diagram of the translation process of very high level language to
machine language is given in Fig. 5.3.

Fig. 5.3: The program translation process

Store

4GL
Program

4GL Translator Compiler

Operating
System

Machine
Language
Program

High Level
Language

The 4GL arose partly in response to the applications
backlog. A great deal of programming time is spent maintaining
and improving old programs rather than building new ones. Many
organizations, therefore, have a backlog of applications waiting to
be developed. 4GL, by stepping up the process of application
design and by making it easier for end-users to build their own
programs, helps to reduce the backlog.

5.3 Problem Solving with the Computer

The computer is a general-purpose machine with a
remarkable ability to process information. It has many capabilities,
and the user determines its specific function at any particular time.
This depends on the program loaded into the computer memory
being utilized by the user.

There are many types of computer programs. However, the
programs designed to convert the general-purpose computer into
a tool for a specific task or applications are called Application
programs. These are developed by users to solve their peculiar
data processing problems. Computer programming is the act of
writing a program that a computer can execute to produce the
desired result. A program is a series of instructions assembled to
enable the computer to carry out a specified procedure. A
computer program is the sequence of simple instructions into
which a given problem is reduced and which is in a form the
computer can understand, either directly or after translation.

5.3.1 Principles of Good Programming

It is generally accepted that a good computer program should
have the following characteristics:

• Accuracy: The program must do what it is supposed to do
correctly and meet the criteria in its specification.

• Reliability: The program must always do what it is
supposed to do, and never crash.

• Efficiency: Optimal utilization of resources is essential. The
program must use available storage space and other
resources in such a way that system speed is not wasted.

• Robustness: The program should cope with invalid data and
not stop without an indication of the cause/source of error.

• Usability: The program must be easy enough to use and be
well documented.

• Maintainability: The program must be easy to amend,
having good structuring and documentation.

• Readability: The code in a program should be well laid out
and explained with comments.

5.3.2 Stages of Programming
The preparation of a computer program involves a set of

procedure. These steps can be classified into eight major stages;
(i) Problem definition
(ii) Devising the method of solution
(iii) Developing the method using suitable aids, e.g.

pseudo code or flowchart.
(iv) Writing the instructions in a programming language
(v) Transcribing instructions into machine sensible form
(vi) Debugging the program
(vii) Testing the program
(viii) Documenting all works involved in producing the

program.

Problem definition

The first stage requires a good understanding of the
problem. The programmer (i.e. the person writing the program)

needs to thoroughly understand what is required of a problem. A
complete and precise unambiguous statement of the problem to
be solved must be stated. This will entail the detailed specification
which lays down the input processes and output required.
Devising the method of solution

The second stage involved is spelling out the detailed
algorithm. The use of a computer to solve problems (be it scientific
or business data processing problems) requires that a procedure or
an algorithm be developed for the computer to follow in solving
the problem.
Developing the method of solution

There are several methods for representing or developing
solutions to a problem. Examples of such methods are: algorithms,
flowcharts, pseudo code, and decision tables.
Writing the instructions in a programming language

After outlining the method of solving the problem, a proper
understanding of the syntax of the programming language to be
used is necessary in order to write the series of instructions
required to get the problem solved.
Translating the instructions into machine sensible form

After the program is coded, it is converted into machine
sensible form or machine language. There are some specially
written programs that translate users programs (source programs)
into machine language (object code). These are called translators.
Compilers translate instructions that machines can execute at a go,
while interpreters accept a program and execute it line-by-line.
During translation, the translator carries out syntax check on the
source program to detect errors that may arise from wrong use of
the programming language.

Program debugging
A program might not execute successfully the first time due to

the presence of a few errors (bugs). Debugging is the process of
locating and correcting errors. There are three classes of errors.

• Syntax (grammar) errors: Caused by coding mistake (illegal
use of a feature of the programming language).

• Logic (semantic) errors: Caused by faulty logic in the design
of the program. The program will work but not as intended.

• Execution (run-time) errors: The program works as
intended but illegal input or other circumstances at run-
time makes the program stop.

There are two basic levels of debugging. The first level called
desk checking or dry running is performed after the program has
been coded. Its purpose is to locate and remove as many logical
and clerical errors as possible. The program is then read (or
loaded) into the computer and processed by a language translator.
The function of the translator is to convert the program
statements into the binary code of the computer called the object
code. As part of the translation process, the program statements
are examined to verify that they have been coded correctly, if
errors are detected, the language translator generates a series of
diagnostics referred to as an error message list. With this list in the
hand of the programmer, the second level of debugging is reached.

The error message list helps the programmer to find the
cause of errors and make the necessary corrections. At this point,
the program may contain entering errors, as well as clerical errors
or logic errors. The programming language manual will be very
useful at this stage of program development. After corrections
have been made, the program is again read into the computer and
again processed by the language translator. This is repeated over
and over again until the program is error-free.

Program testing
The purpose of testing is to determine whether a program

consistently produces correct or expected results. A program is
normally tested by executing it with a given set of input data
(called test data), for which correct results are known. For
effective testing of a program, the testing procedure is broken into
three segments. The programmer can use any of these three
alternatives to locate the bugs.

a. The program is tested with inputs that one would
normally expect for an execution of the program.

b. Valid but slightly abnormal data is injected (used) to
determine the capabilities of the program to cope with
exceptions. For example, minimum and maximum
values allowable for a sales amount field may be
provided as input to verify that the program processed
them correctly.

c. Invalid data is inserted to test the program's error-
handling routines. If the result of the testing is not
adequate, then minor logic errors still abound in the
program.

Other methods of testing a program for correctness include:
• Manual walk-through: The programmer traces the

processing steps manually to find the errors, pretending to
be the computer, following the execution of each
statement in the program, noting whether or not the
expected results are produced.

• Use of tracing routines: If this is available for the language’s
development interface, this is similar to manual
walkthrough, but is carried out by the computer; hence it
takes less time and is not susceptible to human error.

• Storage dump: This is the printout of the contents of the
computer's storage locations. By examining the contents of
the various locations when the program is halted, the
instruction at which the program is halted can be
determined. This is an important clue to finding the error
that caused the halt.

• Program documentation: A documentation of the program
should be developed at every stage of the programming
cycle. The following are documentations that should be
done for each program.

(a) Problem Definition Step
• A clear statement of the problem
• The objectives of the program (what the program is to

accomplish)
• Source of request for the program.
• Person/official authorizing the request

(b) Planning the Solution Step
• Flowchart, pseudo code or decision tables
• Program narrative
• Descriptive of input, and file formats

(c) Program source coding sheet
(d) User manual to aid persons who are not familiar with the

program to apply it correctly. The manual contains a
description of the program and what it is designed to
achieve.

(e) Operator manual to assist the computer operator to
successfully run the program. This manual contains:

i) Instructions about starting, running and terminating
the program,

ii) Message that may be printed on the console or VDU
(terminal) and their meanings.

iii) Setup and take down instruction for files.
Advantages of Program Documentation

a. It provides all necessary information for anyone who comes
in contact with the program.

b. It helps the supervisor in determining the program's
purpose, how long the program will be useful and future
revisions that may be necessary.

c. It simplifies program maintenance (revision or updating).
d. It provides information as to the use of the program to

those unfamiliar with it.
e. It provides operating instructions to the computer

operator.

5.4 Algorithms and Flowcharts
5.4.1 Algorithms

Before a computer can be put to any meaningful use, the
user must be able to come out with or define a unit sequence of
operations or activities (logically ordered) which gives an
unambiguous method of solving a problem or finding out that no
solution exists. Such a set of operations is known as an
ALGORITHM.

Definition: An algorithm, named after the ninth century-
scholar Abu Jafar Muhammad Ibn Musa AI-Khawarizmi, can be
defined as follows:

• An algorithm is a set of rules for carrying out calculations
either by hand or a machine.

• An algorithm is a finite step-by-step procedure to achieve a
required result.

• An algorithm is a sequence of computational steps that
transform the input into the output.

• An algorithm is a sequence of operations performed on
data that have to be organized in data structures.

• An algorithm is an abstraction of a program to be executed
on a physical machine (model of computation).

The most famous algorithm in history dates well before the
time of the ancient Greeks: this is Euclid’s algorithm for calculating
the Highest Common factor (HCF) of two integers. An algorithm
therefore can be characterized by the following:

(i) A finite set or sequence of actions
(ii) This sequence of actions has a unique initial action
(iii) Each action in the sequence has unique successor
(iv) The sequence terminates with either a solution or a

statement that the problem is unresolved.
An algorithm can therefore be seen as a step-by-step method

of solving a problem.

5.4.2 Flowchart
A flowchart is a graphical representation of the major steps

in solving a task. It displays in separate boxes the essential steps of
the program and shows by means of arrows the direction of
information flow. The boxes, most often referred to as illustrative
symbols, may represent documents, machines or actions taken
during the process. A flowchart can also be said to be a graphical
representation of an algorithm, that is, it is a visual picture which
gives the steps of an algorithm and also the flow of control
between the various steps.

5.4.3 Flowchart Symbols

Flowcharts are drawn with the help of symbols. The most
commonly used flowchart symbols and their functions are shown
in Fig. 5.4

5.4.4 Guidelines for Drawing Flowcharts
• Each symbol denotes a type of operation: Input, Output.

Processing, Decision, Transfer or Branch or Terminal.
• A note is written inside each symbol to indicate the specific

function to be performed.
• Flowcharts are read from top to bottom.
• A sequence of operations is performed until a terminal

symbol designates the end of the run or branch connector
transfers control.

Fig 5.5: Flowchart symbols and their functions

Used to show the direction of travel. These show operations
and data flow direction

Used for entry to or exit from a page

Used for entry to or exit from another part
of flowchart. A small circle identifies one
Junction point of the program.

Used for one or more named operations
or program steps specified in a
Subordinate or another set of flowchart

Used for decision making. Has one or
more lines leaving the box. These lines
are labelled with different decision
Result that is, ‘Yes’, ‘No’, ‘True’, or
‘FALSE’

Used for Input and Output instruction
PRINT, READ, INPUT.

Used for arithmetic calculation of process
E.g. sum =X+Y+Z

 Symbol Function

Used to show the START or STOP. May
show exit to a closed subordinate.

5.4.5 Flowcharting a Problem
The digital computer does not do any thinking and cannot

make unplanned decisions. Every step of the problem has to be
taken care of by the program. A problem, which can be solved by a
digital computer, need not be described by an exact mathematical
equation, but it does need a certain set of rules that the computer
can follow. If a problem needs intuition or guessing, or is so badly
defined that it is hard to put into words, the computer cannot
solve it. You have to define the problem and set it up for the
computer in such a way that every possible alternative is taken
care of. A typical flowchart consists of special boxes, in which are
written the activities or operations for solving the problem. The
boxes, linked by means of arrows, show the sequence of
operations. The flowchart acts as an aid to the programmer, who
follows the flowchart design to write his programs.

5.4.6 Examples on writing Algorithms and Flowcharting

1. Write an algorithm to read values for three variables. U, V,
and W and find a value for RESULT from the formula:
RESULT = U + V2/W. Draw the flowchart.
Solution in Algorithm
(i) Start
(ii) Input values for U, V, and W
(iii) Compute value for result, result = U + V*V/W
(iv) Print value of result
(v) Stop

 Flowchart

INPUT U, V, W

RESULT U + (V*V) / W

PRINT RESULT

START

STOP

2. Suppose you are given N numbers. Prepare the algorithm
that adds up these numbers and find the average. Draw the
flowchart.

Solution in Algorithm
i. Start

ii. Set up a Counter which counts the number of times the
loop is executed. Initialize Counter to 1. Counter← 1

iii. Initialize sum to zero. Sum← 0
iv. Input value and add to sum. Input value; Sum← Sum+value
v. Increment the counter. counter← counter+1

vi. Check how many times you have added up the number, if it
is not up to the required number of times, to step iv.
(if counter <N, then go to step iv)

vii. Compute the average of the numbers. Avg← Sum/N
viii. Print the average.

ix. Stop.
For Flowchart, see Fig. 5.6

3. Prepare an algorithm that prints name and weekly wages

for each employee out of 10 where name, hours worked,
and hourly rate are read in. Draw the flowchart.

Solution in Algorithm
(i) Start
(ii) Read number of workers, N
(iii) Initialize Counter to 1 Counter← 1
(iv) Read name, hours and rate

(v) Let the wage be assigned the product of hours and rate
wage← hrs*rate

(vi) Print name, wage
(vii) Increment the counter by 1 Counter← Counter+1

(viii) Make a decision (Check how many times you have
 Calculated the wages). If counter<N, then go to step iv

(ix) Stop.
For Flowchart, see Fig. 5.7

5.4.7 Pseudocodes

A pseudocode is a program design aid that serves the
function of a flowchart in expressing the detailed logic of a
program. Sometimes a program flowchart might be inadequate for
expressing the control flow and logic of a program. By using
pseudo codes, program algorithms can be expressed as English-
language statements. These statements can be used both as a
guide when coding the program in a specific language and as
documentation for review by others. Because there is no rigid rule
for constructing pseudo codes, the logic of the program can be
expressed in a manner that does not conform to any particular
programming language. A series of structured words is used to
express the major program functions. These structured words are
the basis for writing programs using a technical term called
structured programming.
Example
Construct a pseudocode for the problem in the example above.
BEGIN
STORE 0 TO SUM
STORE 1 TO COUNT
DO WHILE COUNT not greater than 10
ADD COUNT to SUM
INCREMENT COUNT by 1

ENDWILE
END

 START

Fig. 5.6 Flowchart for Exercise 2

SUPPLY N

COUNTER 1
SUM 0

INPUT VALUE

SUM SUM + VALUE
COUNTER COUNTER + 1

No

Yes

PRINT AVG

STOP

IF
COUNTER<20

?

AVG SUM/20

Read number
of workers N

START

Read Name hrs

COUNTER 1

Fig. 5.7 Flowchart for Exercise 3

