PHY 101 LECTURE NOTE

 - by- Dr Olubosede Olusayo

KINEMATICS

- This is the branch of classical mechanics whish describes the motion of points, bodies (objects) and systems of bodies (group of Objects) without consideration of the causes of motion.

3

- Kinematic as a field of study is often referred to as "geometry of motion".
- Classical mechanics is the study of motion of bodies (including a special case in which the bodies remain at rest)

3

- in accordance with the general principles first enunciated by Sir Isaac Newton on the Philosophiae Naturalis Principia mathematical (1687) commonly known as the Principia.

Converting between the Cartesian and

Polar Coordinates

- X and y are used in representing the Cartesian Coordinates while r and θ values are used for the Polar Coordinates.
- $\sin \theta=o p p / h y p=y / r$
- $\cos \theta=a d j / h y p=x / r$
- $\tan \theta=o p p / a d j=y / x$

cont

$$
\begin{align*}
& \sin \theta=\frac{\text { opp }}{\text { hypo }}=\frac{y}{r} \\
& \cos \theta=\frac{\text { adj }}{\text { hypo }}=\frac{x}{r} \tag{2}\\
& \tan \theta=\frac{\text { opp }}{\text { adj }}=\frac{y}{x} \tag{3}\\
& r^{2}=x^{2}+y^{2}
\end{align*}
$$

Question 1

- The Cartesian coordinates of a point xyplanes are (x, y) - $(3.50 \mathrm{~m}, 2.50 \mathrm{~m})$, Find the polar coordinates of the point.
- From equation 4

$$
r^{2}=x^{2}+y^{2}
$$

$$
(4)
$$

cont

$$
\begin{gathered}
r^{2}=(3.5)^{2}+(2.5)^{2} \\
r=4.3 m
\end{gathered}
$$

For the angle θ

- Using any of the equations 1 to 3
- $\operatorname{Tan} \theta=y / x$
- $\operatorname{Tan} \theta=3.50 / 2.50$
- $\theta=\arctan 0.714$
- $\theta=35.5$ degree
- $R<\theta=4.30<35.5$ degree

Motion in one dimension

- The study of the causes of motion is called dynamics while the study of motion itself without an concern to the cause is called kinematics.
- It can be 1-D, 2-D or 3 -D
- The displacement of an object is defined as its change in position.
$\Delta x \equiv x_{f}-x_{i}$

cont

- x_{f} denotes the initial position of the object
- X_{i} denotes the final position of the object
.Δx denotes change

Velocity

- Average Speed of an object is the length of path it travels divided b the total elapse time.
- Average Speed = Path Length/elapse time

$$
\begin{equation*}
v=\frac{d}{\Delta t} \tag{8}
\end{equation*}
$$

cont

- The average velocity of an object is defined as the displacement of an object divided by the total time
- Average Velocity = displacement/ elapse time

$$
\begin{equation*}
\bar{v}=\frac{\Delta x}{\Delta t}=\frac{x_{f}-x_{i}}{t_{f}-t_{i}} \tag{9}
\end{equation*}
$$

Note

- Average velocity can either be positive or negative (Average speed is always +ve) because we are in one dimension and the sign tells us the direction.

acceleration

- The change of an object's velocity is called acceleration.

$$
\begin{equation*}
\bar{a}=\frac{\Delta v}{\Delta t}=\frac{v_{f}-v_{i}}{t_{f}-t_{i}} \tag{10}
\end{equation*}
$$

Instantaneous acceleration

- This is defined b taking the limit as the end point gets closer and closer.

$$
\begin{gathered}
a \equiv \lim _{\Delta t \rightarrow 0} \frac{\Delta v}{\Delta t} \\
v=v_{0}+a t \\
v_{i}=v_{0} \text { and } v_{f}=v
\end{gathered}
$$

The average velocity

- Could be calculated using

$$
\begin{aligned}
\bar{v} & =\frac{v_{0}+v}{2} \\
& v^{2}=v_{0}^{2}+2 a \Delta x \\
& v^{2}=v_{0}^{2}+2 a s
\end{aligned}
$$

$$
\begin{gathered}
\Delta x=v_{0} t+\frac{1}{2} a t^{2} \\
s=u t+\frac{1}{2} a t^{2}
\end{gathered}
$$

