$y(1 + xy)dx + x(1 + xy + x^2y^2)dy = 0$, obtain the values of the co (c) If c = a + b - d represents the solution to d, and hence an expression for c. [8mks]

(a) Solve the equations: $x^2 + 5y^2 = 21x$ and $x^2 + 2xy + y^2 = 11x$ [8mks] (a) Solve the equations, $x + y - z_{1x}$ and $x + z_{xy} + y^{-} = 11x$ [omks] (b) Obtain the solution of the differential equation: $y' + y \tan x = y^{3} \sec^{4} x$ [Bmks] QUESTION SEVEN (c) Given that y(0) = 1, obtain the solution of the differential equation:

- $(x^{2}+1)dy = (y^{2}+1)dx$ [8mks]

GOOD LUCK TO U ALL!!

$\begin{array}{c} (2^{2} + \frac{1}{2}) + 2 \\ (2^{2} + \frac{1}{2}) + 2 \\$
UNITS: 3 [2015/2016 ACADEMIC SESSION]
Date: 5 th March. 2016. QUESTION 1 [20mka] (a) Solve the differential equation: $(x^2 + 1)y' - y^2 - 1 = 0$; $y(0) = 1$ [10mks] 2-1- (b) Solve the convolution of $(x^2 + 1)y' - y^2 - 1 = 0$; $y(0) = 1$ [10mks] 2-1- (b) Solve the convolution of $(x^2 + 1)y' - y^2 - 1 = 0$; $y(0) = 1$ [10mks] 2-1- (b) Solve the convolution of $(x^2 + 1)y' - y^2 - 1 = 0$; $y(0) = 1$ [10mks] 2-1- (b) Solve the convolution of $(x^2 + 1)y' - y^2 - 1 = 0$; $y(0) = 1$ [10mks] 2-1- (c) $(x^2 - xy) = -1$. [10mks] 2-1- (c) $(x^2 - xy) = $
$y^2 - xz = 3; y^2 - xz = 5; z^2$
VUESTION 2 MA-1-1
(a) Examine the series: $\frac{1}{2} - \frac{4}{2^3 + 1} + \frac{9}{3^3 + 1} - \frac{16}{4^3 + 1} + \cdots$ for absolute or conditional (a) Examine the series: $\frac{1}{2} - \frac{4}{2^3 + 1} + \frac{9}{3^3 + 1} - \frac{16}{4^3 + 1} + \cdots$ for absolute or conditional (b) Solve the equation: $(x^2 - 5)^2 = 2(x^2 - 2x + 5)$ [10mks] $2 = 2(x^2 - 2y)$ (c) Solve the equation: $(x^2 - 5)^2 = 2(x^2 - 2x + 5)$ [10mks] $2 = 3x - 2y$ (c) Solve the equation: $(x^2 - 5)^2 = 2(x^2 - 2x + 5)$ [10mks] $2 = 3x - 2y$ (c) Solve the equation: $(x^2 - 5)^2 = 2(x^2 - 2x + 5)$ [10mks] $2 = 3x - 2y$ (c) Solve the equation: $(x^2 - 5)^2 = 2(x^2 - 2x + 5)$ [10mks] $2 = 3x - 2y$
(b) Solve the equation: $(x^2 - 5)^2 = 2(x^2 - 2x + 5) [10mks] 2 = 3x^{-2}y$ OUESTION 3 [20mks] $2(x^2 - 5)^2 = (x - 4) 2 = 3x^{-2}y$
- (a) Solve the equations: $u(v + w) = p$, $v(w + u)$ with semi-perimeter S, show that $u = v$
(b) If p, q, and r are the sides of a triangle r definition of the form: (c) The real, and that the solution can be expressed in the form: fQ = 1
a histor of 0.5H, and -
$u\cot_2 P = v\cot_2 Q = w\cot_2 n$ QUESTION 4 [20mks] (a) An electric circuit consists of an 8 Ω resistor in series with an inductor of 0.5H, and a f E volts. At $t = 0$, the current $l = 0$. Using mathematical modelling,
(a) An electric circuit consists of E the current $l = 0$. Using manner if $E = 32e^{-8t}$
battery of E votes determine the current I at any time $t > 0$, and the maximum
7 7 (10065)
[10mks] (b) Solve the equation: $x^2 + \frac{1}{x^2} + 7x - \frac{7}{x} = \frac{59}{4}$ [10mks] (c) Solve the equation: $x^2 + \frac{1}{x^2} + 7x - \frac{7}{x} = \frac{59}{4}$ [10mks] (c) Solve the equation: $x^2 + \frac{1}{x^2} + 7x - \frac{7}{x} = \frac{59}{4}$ [10mks] (c) Solve the equation: $x^2 + \frac{1}{x^2} + 7x - \frac{7}{x} = \frac{59}{4}$ [10mks] (c) Solve the equation $y^2 + \frac{1}{2}x - \frac{59}{4} - \frac{1}{2}x + \frac{1}{2}x = 0$ (c) Solve the equation $y^2 + \frac{1}{2}x - \frac{59}{4} - \frac{1}{2}x + \frac{1}{2}x = 0$ (c) Solve the equation $y^2 + \frac{1}{2}x - \frac{59}{4} - \frac{1}{2}x + \frac{1}{2}x = 0$ (c) Solve the equation $y^2 - y = x^3 \cos x$. Determine its exactness or (c) Solve the differential equation: $xy' - y = x^3 \cos x$. Determine $y(\pi) = 0$. [10mks] (b) Consider the differential equation of the equation, given that $y(\pi) = 0$. [10mks] (c) Solve the equation of the equation $y = 0$ (c) $y = 0$ (c) Solve the equation $y = 0$ (c) $y = 0$ (c
AUESTION 5 [20mks]
QUESTICATION To a state of the second state o
(a) Evaluation of the equation, given and the equation, given and and the equation, given and and and and and and and and and an
(b) Consider and hence find the solution GOOD LUCK Te Eagr. G.K. Demo
QUESTION 5 [20mks] (a) Evaluate $\int \sin^{-1}x dx$ [10mks] (b) Consider the differential equation: $xy' - y = x^3 \cos x$. Determine its exacting of the equation, given that $y(\pi) = 0$. [10mks] (b) Consider the differential equation of the equation, given that $y(\pi) = 0$. [10mks] (c) Otherwise, and hence find the solution of the equation, given that $y(\pi) = 0$. [10mks] (c) Consider the differential equation of the equation $y(\pi) = 0$. [10mks] (c) Consider the differential equation $y(\pi) = 0$. [10mks] (c) Consider the differential equation $y(\pi) = 0$. [10mks] (c) Consider the differential equation $y(\pi) = 0$. [10mks] (c) Consider the differential equation $y(\pi) = 0$. [10mks] (c) Consider $y(\pi) = 0$. [10mks] (c) Consider the differential equation $y(\pi) = 0$. [10mks] (c) Consider $y(\pi) = 0$. [10mks] (c) C
)(xry)

Scanned by CamScanner

FEDERAL UNIVERSITY OYE-EKITI DEPARTMENT OF ELECTRICAL & ELECTRONICS FIRST SEMESTER EXAMINATION

ENGINEERING MATHEMATICS I [ENG 201]

Academic Session: 2016/2017

Course Unit: 3

Time Allowed: 3 Hours

Exam Date: 29th March, 2017.

Instruction: Answer Five Questions in all.

[Average Marks: 60]

[SECTION A]

Answer All the Questions in this Section.

QUESTION ONE

- (a) Solve the equations: yz = py + qz; zx = qz + rx; and xy = rx + py. [12mks]
- (b) Solve the equation: $5x^3 + 31x^2 + 31x + 5 = 0$ [8mics]
- (c) Obtain the real roots of the equation: $(x^2 9x + 15)(x^2 9x + 20) = 6$ [4mits]

QUESTION TWO

- (a) Investigate the convergence or divergence of the series: $\sum_{n=1}^{\infty} \frac{n}{\sqrt{4n^2+1}}$ [6mks]
- (b) Given that $x = \pm \sqrt{\frac{pq}{2r}}$, $y = \pm \sqrt{\frac{qr}{2p}}$ and $z = \pm \sqrt{\frac{pr}{2q}}$, where a + c = b + p;
 - a + b = c + q; and b + c = a + r.
- If \widehat{A} , \widehat{B} and \widehat{C} are the angles of a triangle ABC, show that the roots of x, y and z (i) are real, and that the solution can be expressed as:
 - $x \cot \frac{1}{2}A = y \cot \frac{1}{2}B = z \cot \frac{1}{2}C = \pm \sqrt{S}$, where S is the semi-perimeter of the triangle. [12mks]
- If Δ denotes the area of the triangle ABC in (i) above, show that (ii) $\Delta^{2} = x^{2}y^{2}z^{2}(yz + zx + xy)$ [6mks]

[SECTION B]

Answer Only Three Questions from this Section.

OUESTION THREE

(a) Solve the equation: $(x - a)^3 + (b - x)^3 = (b - a)^3$ [5mks]

- (b) Use the ratio test to determine the range of values of x for which the series:
 - $\sum_{n=1}^{\infty} \frac{(n+1)x^n}{n^3}$ is convergent or divergent. [8mks]
- (c) Evaluate the following integrals:
 - [sin⁵x dx [8mks] (i)
 - $\int (x-b)^3 \sin(x-6)^4 dx$ [3mks] (ii)

QUESTION FOUR

- (a) Prove that if $x + \frac{1}{x} = y + 1$, then $\frac{(x^2 x + 1)^2}{x(x 1)^2} = \frac{y^2}{y 1}$. Hence, solve the equation: $(x^{2} - x + 1)^{2} - 4x(x - 1)^{2} = 0$ [8mks]
- (b) Investigate whether the differential equation: $(1 x^2y)dx + x^2(y x)dy = 0$ is exact

or not. Hence, find the solution of the equation. [Bmks] (c) Solve the equation: $\frac{1}{\sqrt{(a-x)} - \sqrt{a}} + \frac{1}{\sqrt{(a+x)} - \sqrt{a}} = \frac{\sqrt{a}}{x}$ [8mks]

Question 5: [30 marks]

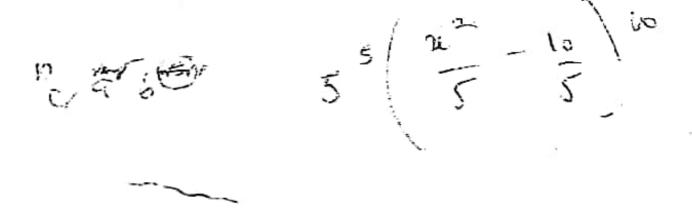
(a) Use Cauchy's integral test to determine the convergence or divergence of the series:

- (b) Determine the coefficient of x^{11} in the series expansion of $5^5 \left(\frac{x^3}{5} \frac{5}{x}\right)^{10}$ [10 merics/ (c) Solve the differential equation: $y(1 + xy)dx + x(1 + xy + x^2y^2)dy = 0$ [10 merts/ Question 6: [30 marks] [10 marks)

(a) Discuss the Convergence or Divergence of the series:

$$\frac{x}{(1^2 + 1)} + \frac{2^2 x^2}{(2^2 + 1)} + \frac{3^2 x^2}{(3^2 + 1)} + \cdots \text{ for real values of } x.$$
 [8 marks]

(b) Solve the differential equation: (6x - 4y + 1)dy - (3x - 2y + 1)dx = 012 marksj


(c) Using Power series, show that $\tan^{-1}x = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \cdots$ [10 marks]

(a) Show that the solution of the differential equation: $x^2 - 3y^2 + 2xyy' = 0$ is

$$y = x\sqrt{8x+1}$$
 given that $y(1) = 3$.

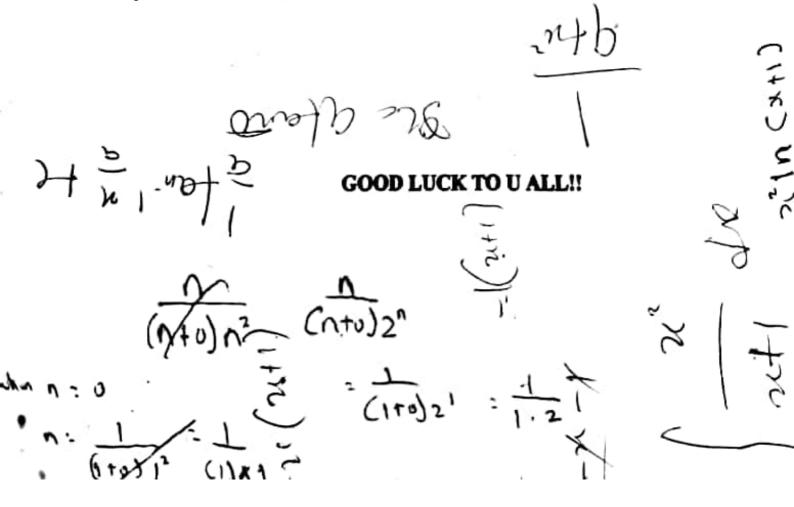
(b) Check if the differential equation is exact and hence solve: $xy' - y = x^3 \cos x$; given the $y(\pi) = 0$ [10 mari

(c) Solve the equation:
$$\frac{1}{\sqrt{a-x} - \sqrt{a}} + \frac{1}{\sqrt{a+x} - \sqrt{a}} = \frac{\sqrt{a}}{x}$$
 [10 matrix]

-

STICH FIVE

- (a) Examine the series: $\frac{1}{1\cdot 2} \frac{1}{2\cdot 2^2} + \frac{1}{1\cdot 2^2} \frac{1}{1\cdot 2^4} + \cdots$ for absolute or conditional convergence. [6mis)
- (b) Solve the equations: $\frac{x}{y+1} + \frac{y}{x+1} = \frac{5}{3}$ and $x^2 + y^2 = 2$ [10mm]
- (c) (i) Differentiate w.r.t. x the function: y = (sin 3x)^x [3mks] (ii) If $x = 5 \cot \theta$ and $y = 10 \csc \theta$, evaluate $\frac{dy}{dx}$ at $\theta = \frac{\pi}{6}$ [Semiss]


QUESTION SIX

- (a) Solve the equations: $\sqrt[3]{x} + \sqrt[3]{y} = 3$ and x + y = 9 [Similar]
- (b) Solve the differential equation: $y' + y \sec x = \tan x$, given that $y(\pi) = \pi$ [Sector]
- (c) If c = a + b d represents the solution to an inexact differential equation given as: $y(1 + xy)dx + x(1 + xy + x^2y^2)dy = 0$, obtain the values of the constants a, b and d, and hence an expression for c. [8mks]

QUESTION SEVEN

- (a) Solve the equations: $x^2 + 5y^2 = 21x$ and $x^2 + 2xy + y^2 = 11x$ [Similar]
- (b) Obtain the solution of the differential equation: $y' + y \tan x = y^3 \sec^4 x$ [Bunks]
- (c) Given that y(0) = 1, obtain the solution of the differential equation:

 $(x^{2} + 1)dy = (y^{2} + 1)dx$ [8mics]

INSTRUCTION: Answer FIVE (5) questions in all, two (2) questions from section A and three (3) questions from section B. Clarity of work shall attract bonus marks!!! UNITS: 3 [2015/2016 ACADEMIC SESSION] <u>Time Allowed</u>: 3 Hours

[SECTION A]

Answer only TWO (2) questions from this section

QUESTION 1 [30mks] (a) Solve the equation: $(x^2 - 5)^2 = 2(x^2 - 2x + 5)$ [10mks] (b) Prove that if $x + \frac{1}{x} = y + 1$, then $\frac{(x^2 - x + 1)^2}{x(x - 1)^2} = \frac{y^2}{y - 1}$. Hence, solve the equation: $(x^2 - x + 1)^2 - 4x(x - 1)^2 = 0$ [12mks] (c) If $x = 5 \cot \theta$ and $y = 10 \csc \theta$, evaluate $\frac{dy}{dx}$ at $\theta = \frac{\pi}{6}$ [8mks] QUESTION 2 [30mks] (a) If $x^3y^3 + 2xy^4 - 3x^2y = 7$, find $\frac{dy}{dx}$ given that y(2) = -1. [8mks] (b) Find the range of values of x for which the series: $\frac{x}{1,2} + \frac{x^2}{2,3} + \frac{x^3}{3,4} + \frac{x^4}{4,5} + \cdots$ is convergent or divergent. [10mks] (c) Solve the equations: $x^2 + y^2 + xy = 84$; $x + y + \sqrt{xy} = 14$ [12mks]

QUESTION 3 [30mks]

2

(i) Solve the equations: x(y + z) = a, y(z + x) = b, z(x + y) = c. [10mks]

(ii) If a, b, and c from (i) above are the sides of a triangle ABC with semi-perimeter S, show that the roots are real, and that the solution can be expressed in the form: $x \cot \frac{1}{2}A = y \cot \frac{1}{2}B = z \cot \frac{1}{2}C = \pm \sqrt{S}$. [14mks]

(iii) If Δ denotes the area of the triangle ABC in (ii) above, prove that:

$$\Delta^{2} = x^{2}y^{2}z^{2}(yz + zx + xy).$$
 [6mks]

Scanned by CamScanner

(a) Investigate the Convergence or Divergence of the series: $\sum_{n=1}^{\infty} \frac{n}{\sqrt{nn^2 + n^2 - 24}}$ QUESTION FOUR [Senter] (b) Solve the reciprocal equation: $x^3 + \frac{1}{x^3} + 7x - \frac{7}{x} = \frac{59}{4}$ [Senter] (c) Solve the equation: $\frac{1}{\sqrt{(a-x)} - \sqrt{a}} + \frac{1}{\sqrt{(a+x)} - \sqrt{a}} = \frac{\sqrt{a}}{x}$ [Similar] (a) Given that $\gamma(0) = -1$, obtain the solution of the differential equation: QUESTION FIVE $y'\cos x + y\sin x = y^3\cos^2 x$ [10mim] (b) If $x = 3 \sec \theta$ and $y = 6 \tan \theta$, evaluate $\frac{dy}{dx}$ at $\theta = \frac{\pi}{6}$ [Similar] $\sqrt{(c)}$ Determine the range of values x for which the series $\frac{(x-2)}{1} + \frac{(x-2)^2}{2} + \frac{(x-2)^3}{3} + \cdots$ is convergent or divergent [9mics]

(a) Solve the equations: $xyz = p^2x = q^2y = r^2z$. Hence, find the values of x, y and QUESTION SIX z given that p = 10, q = 5 and r = 2. [8mics]

- (b) Discuss the convergence or divergence of the series:
 - $\frac{1}{1.3} + \frac{2}{3.5} + \frac{3}{5.7} + \frac{4}{7.9} + \dots \quad [8mics]$

(c) Investigate the differential equation for exactness: $xy' - y = x^3 \cos x$. Hence, find its solution given that $y(\pi) = 0$. [Sinks]

OUESTION SEVEN

(a) Examine the series for absolute or conditional convergence:

 $1 - \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} - \frac{1}{\sqrt{4}} + \cdots$ [8mks]

(b) Solve the equations: $x^2 + y^2 = 2y$ and $2xy - y^2 = y$ [8mixs]

(c) An electric circuit consists of an 8 Ω resistor in series with an inductor of 0.5H, and a battery of E volts. At t = 0, the current l = 0. Using mathematical modelling, determine the current / at any time t > 0, and the maximum current if E = 32e-Bt [Binks]

GOOD

Instruction: Answer questions 1 & 2 and any other three questions Clarity of work shall attract Bonus Marks!! Use of programmable calculators is highly prohibited! Time Allowed: 3 Hours '._ Exam Date: 27th May, 2015 Average Marks: 60% Total Units: 3 Year: 2014/2015 Academic Session

Question 1: [30 marks]

6

 t_U Solve the equations: u(v + w) = p, v(w + u) = q, w(u + v) = r. If p, q, and r are the sides of a triangle PQR with semi-perimeter S, show that the roots are real, and that the solution can be expressed in the form $u\cot\frac{1}{2}P = v\cot\frac{1}{2}Q = w\cot\frac{1}{2}R = \pm\sqrt{5}$. If Δ denotes the area of the trangle. where that $\Delta^2 = u^2 v^2 w^2 (vw + wu + uv)$.

Question 2: [30 marks]
$$\int_{a} \int_{a} \int_{a}$$

(b) If
$$x^{3} + 5x^{6}y^{3} - 10x^{4}y^{5} + xy = 0$$
, find $\frac{dy}{dx}$
(c) Evaluate $\int \frac{dx}{(x+3)^{2} + 25}$
(c) Evaluate

(a) Solve the reciprocal equation:
$$3x^4 - 20x^3 - 94x^2 - 20x + 3 = 0$$

(b) Investigate the Convergence or Divergence of the series: $\sum_{1}^{\infty} \frac{n}{\sqrt{2n^3 + n^2 - 24}} \int \frac{1}{2n} \int \frac{1}{\sqrt{8} marks}$

(c) Solve the equations
$$x^4 + x^2y^2 + y^4 = 133$$
; $x^2 + xy + y^2 = 19$
Question 4: [30 marks]
(a) Evaluate $\int x^4 \sin 2x dx$
(b) Solve the equations: $x^2 + 2xy + 2y^2 = 3x^2 + xy + y^2 = 5$
(c) Prove that $\frac{x}{e^{x-1}} + \frac{x^2}{2} + \frac{x^2}{2} - \frac{x^4}{720} + \cdots$
 $= \frac{1}{25} - \frac{1}{11} + \frac{1}{25} + \frac{1}{11} + \frac$

Densities 3: [10 membry]
(a) Use Cauchy's integral test to determine the convergence of the series:

$$\frac{1}{1:3} + \frac{1}{2:4} + \frac{1}{4:3} + \cdots$$

(b) Determine the coefficient of x^{11} in the series exploration of $s^{21}(\frac{1}{x} - \frac{1}{x})$ (b) membry
(c) Solve the differential equation: $y(1 + xy)dx + x(1 + xy + x^{2}y)dy = 0$ show
 $\frac{1}{2} - \frac{1}{2} + \frac{2^{2}x^{2}}{(x^{2} + 1)} + \frac{2^{2}x^{2}}{(x^{2} + 1)} + \cdots$ for real values of x .
(c) Using Power series, show that $\tan^{-1}x = x - \frac{x}{3} + \frac{x}{3} - \frac{x^{2}}{7} + \cdots$ [10 membry]
(c) Using Power series, show that $\tan^{-1}x = x - \frac{x}{3} + \frac{x}{3} - \frac{x^{2}}{7} + \cdots$
(c) Using Power series, show that $\tan^{-1}x = x - \frac{x}{3} + \frac{x}{3} - \frac{x^{2}}{7} + \cdots$
(c) Using Power series, show that $\tan^{-1}x = x - \frac{x}{3} + \frac{x}{3} - \frac{x^{2}}{7} + \cdots$
(c) Using Power series, show that $\tan^{-1}x = x - \frac{x}{3} + \frac{x}{3} - \frac{x^{2}}{7} + \cdots$
(c) Using Power series, show that $\tan^{-1}x = x - \frac{x}{3} + \frac{x}{3} - \frac{x^{2}}{7} + \cdots$
(c) Using Power series, $(x - 4y + 1)dy = 3$.
(c) Using Power series, $(x - 4y + 1)x = 3$.
(c) Using Power series, $(x - 4y + 1)x = 3$.
(c) Using Power series, $(x - 4y + 1)x = 3$.
(c) Using Power series, $(x - 4y + 1)x = 3$.
(c) Using Power series, $(x - 4y + 1)x = 3$.
(c) Solve the differential equation: $x^{2} - 3y^{2} + 2xyy' = 0$ is
(c) Solve the differential equation: $x^{2} - 3y^{2} + 2xyy' = 0$ is
(c) Solve the equation: $\frac{1}{\sqrt{a - x} - \sqrt{a}} + \frac{1}{\sqrt{a + x} - \sqrt{a}} = \frac{\sqrt{a}}{x}$.
(d) Check if the differential equation: $x^{2} - 3y^{2} + 2xyy = 0$ is
(d) $\frac{1}{\sqrt{a}} - \frac{1}{\sqrt{a}} + \frac{1}{\sqrt{a}} - \frac{1}{\sqrt{a}} = \frac{\sqrt{a}}{x}$.
(e) Solve the equation: $\frac{1}{\sqrt{a - x} - \sqrt{a}} + \frac{1}{\sqrt{a + x} - \sqrt{a}} = \frac{\sqrt{a}}{x}$.
(f) membry]
(g) $\frac{1}{\sqrt{a}} - \frac{1}{\sqrt{a}} + \frac{1}{\sqrt{a + x} - \sqrt{a}} = \frac{\sqrt{a}}{x}$.
(g) $\frac{1}{\sqrt{a}} - \frac{1}{\sqrt{a}} + \frac{1}{\sqrt{a + x} - \sqrt{a}} = \frac{\sqrt{a}}{x}$.
(g) $\frac{1}{\sqrt{a}} - \frac{1}{\sqrt{a}} + \frac{1}{$

1.40

•

FEDERAL UNIVERSITY OYE-EKITI

FACULTY OF ENGINEERING ENGINEERING MATHEMATICS I (ENG 201). QUIZ NO.1 Instruction: Answer all the questions. Time Allowed: 2Hours Quiz Date: 9th February, 2015. Average Marks: 15 Session: 2014/2015 Academic Session 1. Solve the equations: x(y + z) = a, y(z + x) = b, z(x + y) = c. If a, b, c are the sides of a triangle ABC with semi-perimeter S, show that the roots are real, and that the solution can be Solved expressed in the form $x \cot \frac{1}{2}A = y \cot \frac{1}{2}B = z \cot \frac{1}{2}C = \pm \sqrt{S}$. If Δ denotes the area of the DO MARES! triangle, prove that $\Delta^2 = x^2 y^2 z^2 (yz + zx + xy)$. Solve the equation: $2x^5 - 10x^4 + 3x^3 + 20x^2 + 19x + 6 = 0$, using reduction to simpler factors'method. [10 MARKS] (b) Solve the reciprocal equation: $3x^5 + 2x^4 + 5x^3 + 5x^2 + 2x + 3 = 0$ Glash 3 (a) Solve the equation: $\frac{a}{x} + \frac{b}{y} = 2$; $\frac{a^2}{x} + by = a^2 + b^2$ (b) Solve the equations: $x^2 - yz = 3$; $y^2 - xz = 5$; $z^2 - xy = -1$) (IC MARKS) 10 MARES DO MARES $\int_{a}^{1} \sqrt{1} dx$ (a) Solve the equation $\frac{1}{\sqrt{a-x} - \sqrt{a}} + \frac{1}{\sqrt{a+x} - \sqrt{a}} = \frac{\sqrt{a}}{x}$ 5 line (b) Solve the equations: $x^2 - x - y = 0$; $2x^2 + xy + 2y^2 = 5(x + y)$ Example 19 Hears/ 5 line (a) Solve the equations: $x^4 + x^2y^2 + y^4 = 133$; $x^2 + xy + y^2 = 19$ (b) Solve the equations: $x^4 + x^2y^2 + y^4 = 133$; $x^2 + xy + y^2 = 19$ (c) $(x^2 + y^2) + (x^2 + y^2) + (x^2$ (b) Differentiate the following functions w.r.t. x: 15 MARKS Tolved 1. y= VI-x3 [5 MARKS] solver 11. $y = \frac{5^x}{\cos 4x}$ 6. (a) Evaluate the following integrals: [5 MARKS folved 1 (x+3)2+ 25 (FA 700 5 [5 MARKS] $\int \frac{2x-1}{x^2-8x+15} dx$ Soland III Sx3e-xdx (EXAM) 110 MARKS $f_{x} = 1$ (b) If $x^{3}y^{3} + 2xy^{4} = 3x^{2}y = 7$, find $\frac{dy}{dx}$ at x = 2, y = -115 MARKS YOU ARE WELCOME TO FACULTY OF ENGINEERING. GOOD LUCK!!!! 2 ENGR G.K. JEMARU & ENGR F.O. A 8/ ln 2-5

[SECTION B]

Answer any THREE (3) questions from this section. 2 QUESTION 4 [30mks] (a) Evaluate $\int \frac{x+4}{x^3+2x^2-10x} dx$ [10mks] (b) Solve the differential equation: $(x^2 + 1)y' - y^2 - 1 = 0$; y(0) = 1 [10mks] (c) Discuss the convergence or divergence of the series: $\frac{1}{3\cdot 2} + \frac{2}{3\cdot 5} + \frac{3}{5\cdot 7} + \frac{4}{7\cdot 9} + \dots$ (10mks) QUESTION 5 [30mks] (a) Solve the reciprocal equation: $x^4 - x^3 - 4x^2 + x + 1 = 0$ [10mks] (b) Use Cauchy's root test to show that $\sum_{1}^{\infty} \frac{[(n+1)r]^n}{(n^n+r)}$ is convergent if r < 1 and divergent if $r \ge 1$. [10mks] (c) Show that the solution of the differential equation: $x^2 - 3y^2 + 2xyy' = 0$ is $y = x\sqrt{8x+1}$ given that y(1) = 3 [10mks] QUESTION 6 [30mks] (a) Solve the equations: $\frac{x}{5y+1} + \frac{y}{3x+1} = \frac{4}{15}$; 3x + 5y = 2 [10mks] (b) Evaluate / cos⁻¹xdx [10mks] Determine the interval of convergence or divergence of the following series: $\frac{(x-3)}{x^2} + \frac{(x-3)^2}{2^2} + \frac{(x-3)^2}{3^2} + \cdots [10 \text{ mks}] \text{ Solute for N } 174 \text{ No 6C}$ QUESTION 7 [30mks] \sqrt{a} An electric circuit consists of an 8 Ω resistor in series with an inductor of 0.5H, and a battery of E volts. At t = 0, the current l = 0. Using mathematical modelling, determine the current I at any time t > 0, and the maximum current if $\Sigma = 32e^{-8t}$ [9mks] (b) Solve the equations: $x^2 - yz = 3$; $y^2 - xz = 5$; $z^2 - xy = -1$. [13mks] (c) Determine whether the differential equation: (2y - 3)dx + xdy = 0 is exact or not, and hence find the solution of the equation given that y(-2) = 0. [8mks]

FEDERAL UNIVERSITY OVE-EKITI FIRST SEMESTER EXAMINATION ENGINEERING MATHEMATICS 1 (ENG 201)

Instruction: Answer questions 1 & 2 and any other three questions. Clarity of work shall attract Bonus Marks !! Use of programmable calculators is highly prohibited! Time Allowed: 3 Hours Exam Date: 27 May, 2015. Average Marks: 60% Total Units: 3 Year: 2014/2015 Academic Session

Question 1: [30 marks]

Solve the equations: u(v + w) = p, v(w + u) = q, w(u + v) = r. If p, q, and r are the sides of a triangle PQR with semi-perimeter S, show that the roots are real, and that the solution can be expressed in the form $u\cot\frac{1}{2}P = v\cot\frac{1}{2}Q = w\cot\frac{1}{2}R = \pm\sqrt{5}$. If Δ denotes the area of the triangle, (30 marts) prove that $\Delta^2 = u^2 v^2 w^2 (vw + wu + uv)$.

Question 2: [30 marks]

(a) If $x = 3 \sec \theta$ and $y = 5 \tan \theta$, evaluate $\frac{dy}{dx}$ at $\theta = \frac{\pi}{6}$ [8 marks] (b) If $x^3 + 5x^6y^3 - 10x^4y^5 + xy = 0$, find $\frac{dy}{dx}$ [12 merics] (c) Evaluate $\int \frac{dx}{(x+3)^2 + 25}$

Question 3: [30 marks]

[10 marks] (a) Solve the reciprocal equation: $3x^4 - 20x^3 - 94x^2 - 20x + 3 = 0$ [8 marks] (b) Investigate the Convergence or Divergence of the series: $\sum_{1}^{\infty} \frac{n}{\sqrt{8n^3 + n^2 - 24}}$ [12 marks] (c) Solve the equations: $x^4 + x^2y^2 + y^4 = 133$; $x^2 + xy + y^2 = 19$

Question 4: [30 marks]

- (a) Èvaluate ∫ x⁴ sin 2xdx [10 marks (b) Solve the equations: $x^2 + 2xy + 2y^2 = 3x^2 + xy + y^2 = 5$ [10 mark
- (c) Prove that $\frac{x}{e^{x}-1} = 1 \frac{x}{2} + \frac{x^{2}}{2} \frac{x^{4}}{720} + \cdots$

[18 marts]

[10 marks]

FEDERAL UNIVERSITY OYE-EKITI DEPARTMENT OF ELECT/ELECT. ENGINEERING

ENGINEERING MATHEMATICS I [ENG 201]

FIRST SEMESTER EXAMINATION

Academic Session: 2017/2018 Course Unit: 3

Time Allowed: 3 Hours

Exam Date: 23rd May, 2018.

Instruction: Answer Five Questions in all, two questions from section A and three

[SECTION A]

Answer All the Questions in this Section.

QUESTION ONE

- (a) Solve the equations: x(y+z) = a, y(z+x) = b, and z(x+y) = c. [19mmas]
- (b) If a, b, c form the sides of a triangle ABC, show that the solution in (a) above can be expressed in the form: $x \cot(\frac{1}{2})A = y \cot(\frac{1}{2})B = z \cot(\frac{1}{2})C = \pm \sqrt{5}$, where S is the semi-perimeter of the triangle. [Bmiss]
- (c) If ∆ denotes the area of triangle ABC in (b) above, calculate the value of ∆ to the nearest whole number, given that x = 2.5 cm, y = 3.2 cm and z = 4 cm. (Genins)

OUESTION TWO

(a) Solve the equations: $x^2 + y^2 + xy = 84$; $x + y + \sqrt{xy} = 14$ [Solve the equations: $x^2 + y^2 + xy = 84$; $x + y + \sqrt{xy} = 14$ [Solve the equations]

- (b) Obtain the solution of the homogeneous differential equation:
- $(y^3 2x^2y)dx + (x^3 2xy^2)dy = 0$, given that x = 1, when y = 1. [Similar]
- (C)Evaluate ∫ cos⁻¹xdx [Smiss]

[SECTION B]

Answer Only Three (3) Questions from this Section.

QUESTION THREE

- (a) Solve the equation: $x^5 + x^4 3x^3 9x^2 14x 8 = 0$ [8mks]
- (b) If c = a(x,y) + b(x,y) d(x,y) represents the solution to an inexact differential equation given as: $y(1 + xy)dx + x(1 + xy + x^2y^2)dy = 0$, obtain the values of a, b and d, and hence an expression for c. [8mins]
- (c) Use Cauchy's integral test to determine the convergence or divergence of the

series: $\frac{1}{2} + \frac{2}{3} + \frac{3}{4} + \frac{3}{45} + \cdots$ [Smics]

FEDERAL UNIVERSITY OYE-EKITI

DEPARTMENT OF ELECTRICAL & ELECTRONIC ENGINEERING ENGINEERING MATHEMATICS I, ENG 201 FIRST SEMESTER EXAMINATION

Academic Session: 2018/2019

Course Unit: 3 Time Allowed: 3 Hours Exam Date: 15th June, 2019.

Instruction: Answer Five Questions in all, 2 questions from section A & 3 questions from section B

SECTION A

Answer All the Questions in this Section.

QUESTION ONE

- (a) Solve the equations: x(y+z) = a, y(z+x) = b, and z(x+y) = c. [10mks]
- (b) If a, b, c form the sides of a triangle ABC, show that the solution in (a) above can be expressed in the form: $x \cot(\frac{1}{2})A = y \cot(\frac{1}{2})B = z \cot(\frac{1}{2})C = \pm \sqrt{S}$, where S is the semi-perimeter of the triangle. [8mks]
- (c) If Δ denotes the area of triangle ABC in (b) above, calculate the value of Δ to the nearest whole number, given that x = 2.5cm, y = 3.2cm and z = 4cm. [6mks]

QUESTION TWO

- (a) Solve the equations: yz = py + qz; zx = qz + rx; and xy = rx + py. [10mks]
- (b) Show that the solution of the differential equation: x² 3y² + 2xyy' = 0 is y = x√8x + 1 given that y(1) = 3 [8mks]
 (c) Evaluate (newsile in the second sec
- (c) Evaluate ∫ cos⁻¹xdx [6mks]

SECTION B

Answer Only Two (2) Questions from this Section.

QUESTION THREE

- (a) Solve the equation: $x^5 + x^4 3x^3 9x^2 14x 8 = 0$ [8mks]
- (b) If c = a(x,y)+b(x,y) d(x,y) represents the solution to an inexact differential equation given as: $y(1+xy)dx + x(1+xy + x^2y^2)dy = 0$, obtain the values of a, b and d, and hence an expression for c. [8mks]
- (c) Use Cauchy's integral test to determine the convergence or divergence of the series: $\frac{1}{2} + \frac{2}{3} + \frac{3}{4} + \frac{3}{4} + \cdots$

QUESTION FOUR

(a) Prove that if $x + \frac{1}{x} = y + 1$, then $\frac{(x^2 - x + 1)^2}{x(x - 1)^2} = \frac{y^2}{y - 1}$. Hence, solve the equation: $(x^2 - x + 1)^2 - 4x(x - 1)^2 = 0$ [8mks]

(b) Investigate the Convergence of Divergence of the series: $\sum_{1}^{\infty} \frac{n}{\sqrt{8n^3 + n^2 - 24}}$ [8mks]

(c) Given that y(0) = 1, obtain the solution of the differential equation: $(x^2 + 1)dy = (y^2 + 1)dx$ [8mks]

QUESTION FIVE

- (a) Given that y(0) = -1, obtain the solution of the differential equation: $y' \cos x + y \sin x = y^3 \cos^2 x$ [8mks]
- (b) Determine the range of values x for which the series: $\frac{(x-2)}{1} + \frac{(x-2)^2}{2} + \frac{(x-2)^3}{3} + \cdots$ is convergent or divergent. [8mks]
- c) Investigate the differential equation for exactness: $x^2y' y' = x^3y$. Hence, find its solution given that y(0) = 1. [8mks]

(8mks)

FEDERAL UNIVERSITY OYE-EKITI DEPARTMENT OF ELECTRICAL & ELECTRONICS FIRST SEMESTER EXAMINATION

ENGINEERING MATHEMATICS I [ENG 201] Academic Session: 2016/2017 Course Unit: 3 Time Allowed: 3 Hours Exam Date: 29th March, 2017. Instruction: Answer Five Questions in all. [Average Marks: 60]

Answer All the Questions in this Section. [SECTION A]

OUESTION ONE

- (a) Solve the equations: $\gamma z = py + qz$; zx = qz + rx; and xy = rx + py. [12mim]
- (b) Solve the equation: $5x^3 + 31x^2 + 31x + 5 = 0$ [Simica]
- (c) Obtain the real roots of the equation: $(x^2 9x + 15)(x^2 9x + 20) = 6$ [4mm]

OUESTION TWO

(a) Investigate the convergence or divergence of the series: $\sum_{n=1}^{\infty} \frac{n}{\sqrt{4n^2+1}}$ [dmm]

(b) Given that
$$x = \pm \sqrt{\frac{pq}{2r}}$$
, $y = \pm \sqrt{\frac{qr}{2p}}$ and $z = \pm \sqrt{\frac{pr}{2q}}$, where $a + c = b + p$;

- a + b = c + q; and b + c = a + r. If \widehat{A} , \widehat{B} and \widehat{C} are the angles of a triangle ABC, show that the roots of x, y and z Ø are real, and that the solution can be expressed as: $x \cot \frac{1}{2}A = y \cot \frac{1}{2}B = z \cot \frac{1}{2}C = \pm \sqrt{S}$, where S is the semi-perimeter of the triangle. [12miss]
- If Δ denotes the area of the triangle ABC in (i) above, show that (11) $\Delta^{2} = x^{2}y^{2}z^{2}(yz + zx + xy)$ [6mlos]

[SECTION B]

Answer Only Three Questions from this Section.

QUESTION THREE

- (a) Solve the equation: $(x a)^3 + (b x)^3 = (b a)^3$ [Smits]
- (b) Use the ratio test to determine the range of values of x for which the series:
 - $\sum_{n=1}^{\infty} \frac{(n+1)x^n}{n^5}$ is convergent or divergent. [8mixs]
- (c) Evaluate the following Integrals:
 - ∫sin⁵x dx [8mks] ۸D)
 - $\int (x-6)^3 \sin(x-6)^4 dx$ [3mks] (ii)

QUESTION FOUR

- (a) Prove that if $x + \frac{1}{x} = y + 1$, then $\frac{(x^2 x + 1)^2}{x(x 1)^2} = \frac{y^2}{y 1}$. Hence, solve the equation:
- $(x^2 x + 1)^2 4x(x 1)^2 = 0$ [Similar] (b) Investigate whether the differential equation: $(1 - x^2y)dx + x^2(y - x)dy = 0$ is exact. or not. Hence, find the solution of the equation. [Smics]
- (c) Solve the equation: $\frac{1}{\sqrt{(a-x)} \sqrt{a}} + \frac{1}{\sqrt{(a+x)} \sqrt{a}} = \frac{\sqrt{a}}{x}$ [8mks]

INC. ITTE