
Page 1 of 85 
 

 

 

 

 

 

 

MTE201 C Programming Basics  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Page 2 of 85 
 

 

COURSE SYNOPSES 

C Programming: Introductory concepts, C fundamentals, operators and expression, 

data input and output, preparing and running a complete C program, control 

statements, functions, program structure, arrays, pointers, structures and unions, data 

files and low level programming. Advanced C Programming: Control statements, 

functions, program structure, arrays, pointers, structures and unions, data files and 

low level programming.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Page 3 of 85 
 

 

1.0. History of C   

The C programming language was pioneered by Dennis Ritchie at AT&T Bell 

Laboratories in the early 1972. The language was formalized in 1988 by the 

American National Standard Institute (ANSI). It was not until the late 1970s, that this 

programming language began to gain widespread popularity and support. This was 

because until that time C compilers user re not readily available for commercial use 

outside of Bell Laboratories. C is a general-purpose programming language, and is 

used for writing programs in many different domains, such as operating systems, 

numerical computing, graphical applications, etc. It is a small language, with just 32 

keywords. It provides “high-level” structured programming constructs such as 

statement grouping, decision making, and looping, as user ll as “low level” 

capabilities such as the ability to manipulate bytes and addresses. 

1.1. Programming 

Computers are really very dumb machines indeed because they do as instruct by the 

user. To solve a problem using a computer, you must express the solution to the 

problem in terms of the instructions of the particular computer. A computer program 

is just a collection of the instructions necessary to solve a specific problem. The 

approach or method that is used to solve the problem is known as an algorithm. 

Normally, to develop a program to solve a particular problem, you first express the 

solution to the problem in terms of an algorithm and then develop a program that 

implements that algorithm. So, the algorithm for solving the even/odd problem might 

be expressed as follows: First, divide the number by two. If the remainder of the 

division is zero, the number is even; otherwise, the number is odd. With the algorithm 

in hand, you can then proceed to write the instructions necessary to implement the 

algorithm on a particular computer system. These instructions would be expressed in 

the statements of a particular computer language, such as Visual Basic, Java, C++, 

or C. 

1.2. Operating Systems 

An operating system is a program that controls the entire operation of a computer 

system. All input and output (that is, I/O) operations that are performed on a 

computer system are channeled through the operating system. One of the most 

popular operating systems today is the Unix operating system, which was developed 

at Bell Laboratories. Unix is a rather unique operating system in that it can be found 

on many different types of computer systems, and in different “flavors,” such as Linux 

or Mac OS X. 



Page 4 of 85 
 

1.3. The C Compiler  

A compiler analyzes a program developed in a particular computer language and 

then translates it into a form that is suitable for execution on your particular computer 

system. The source code written in source file is the human readable source for your 

program. It needs to be "compiled" into machine language so that your CPU can 

actually execute the program as per the instructions given. The compiler compiles the 

source codes into final executable programs. The most frequently used and free 

available compiler is the GNU C/C++ compiler, otherwise you can have compilers 

either from HP or Solaris if you have the respective operating systems.  

 

1.4. Integrated Development Environments (IDE) 

This process of editing, compiling, running, and debugging programs is often 

managed by a single integrated application known as an Integrated Development 

Environment, or IDE for short. An IDE is a windows-based program that allows you to 

easily manage large software programs, edit files in windows, and compile, link, run, 

and debug your programs. 

 

1.5. Touring the Code::Blocks  workspace 

Figure 1 illustrates the Code::Blocks  workspace, which is the official name of the 

massive mosaic of windows you see on the screen. The details in Figure 1 are rather 

small, but what you need to find are the main areas, which are called out in the figure: 

1. Toolbars: These messy strips, adorned with various command buttons, 

cling to the top of the Code::Blocks  window. There are eight toolbars, 

which you can rearrange, show, or hide. Don’t mess with them until you 

get comfy with the interface. 

2. Management: The window on the left side of the workspace features 

four tabs, though you may not see all four at one time. The window 

provides a handy oversight of your programming endeavors. 

3. Status bar: At the bottom of the screen, you see information about the 

project and editor and about other activities that take place in 

Code::Blocks . 

4. Editor: The big window in the center-right area of the screen is where 

you type code. 



Page 5 of 85 
 

5. Logs: The bottom of the screen features a window with many, many tabs. 

Each tab displays information about your programming projects. The 

tab you use most often is named Build Log. 

 

Figure 1 The Code::Blocks  workspace. 

 

1.6. Creating a new project  

1. Start Code::Blocks . You see the Start Here screen, which displays the 

Code::Blocks  logo and a few links. If you don’t see the Start Here screen, 

choose File➪Close workspace. 

2. Click the Create a New Project link. The New from Template dialog box 

appears, as shown in Figure 2. 

3. Choose Console Application and then click the Go button. The Console 

Application Wizard appears. You can place a check mark by the item 

Skip This Page Next Time to skip over the wizard’s first screen. 

4. Click the Next button. 

5. Choose C as the language you want to use, and then click the Next 

button. C is quite different from C++ — you can do things in one 

language that aren’t allouser d in the other. 



Page 6 of 85 
 

 

Figure 2 New projects 

6. Type MTE201_01 as the project title. When you set the project title, the 

project’s filename is automatically filled in. 

7. Click the ... (Browse) button to the right of the text box titled Folder to 

Create Project In. I recommend that you create and use a special folder 

for all projects in this book. 

8. Use the Make New Folder button in the Browse for Folder dialog box 

to create a project folder.  

9. Click the OK button to select the folder and close the dialog box. 

10. Click the Next button. The next screen (the last one) allows you to select 

a compiler and choose whether to create Debug or Release versions of 

your code, or both. The compiler selection is fine; the GNU GCC Compiler 

(or whatever is shown in the window) is the one you want. 

11. Remove the check mark by Create Debug Configuration. You create this 

configuration only when you need to debug, or fix, a programming 

predicament that puzzles you.  

12. Click the Finish button. 

 

1.7. Features of C language   

1. High level language: it is written in user understandable language making it 

user friendly and easy to comprehend.  

2. Structured language: it improves clarity, quality and it reduces the develop 

time for designing a programming software  



Page 7 of 85 
 

3. Rich library: it has its own library which includes most of the arithmetic and logic 

operation which are predefined. The user only includes the needed library in 

the code and their functionality can be executed without having to code them 

separately.  

4. Extensibility: programs written in C language are highly extensible. 

5. Recursion:  this prevent the writing of the same function multiply times. Instead 

whenever the user needs the function user just have to call it.  This help to reduce 

the time involved in the development cycle and also improves the code 

functionality.  

6. Pointers: using the pointers user can directly interact with the physical memory 

of the computer system.  

7. Faster execution: program execution is faster in C language than its 

predecessors. 

8. Memory management: C language offers many functions where user can 

dynamically and directly interact with the memory of the computer system.    

 

1.7.1. C-Tokens  

Figure 3 presents the C-tokens in C programming language.  

 

Figure 3 C-Tokens 

Keywords: variables having specified meaning and are predefined in C library. Such 

as main, for, if, else etc.  Keywords cannot be renamed or reprogramed. Figure 4 

shows the 32 keywords in C language.  

 



Page 8 of 85 
 

 

Figure 4 The 32 keywords in C language 

 

Constants: sometimes refer to as literals are like variables, but unlike variables once 

they are declared their values cannot be changed. The syntax is: 

const data_type variable_name;  

  Or 

const data_type*variable_name;  

 

Types of Constants in C language  

1. Integer constants  

2. Floating point constants  

3. Character constants 

4.  String constants  

5. Octal and Hexadecimal constants  

 

 

Strings: these are collection of characters defined in form of an array and end with 

null character which describes the end of the string to the compiler.   The syntax is:  

 

char string_name[Length_of_the_string] 

 

In strings we have alphabetical data meaning (A - Z) which is stored in form of arrays.  

 

Identifiers: this are names declared in the program in order to name a value, variable 

function, array etc. The syntax is: 



Page 9 of 85 
 

int x = 10; 
 

In the above, x is the identifier and the value stored is 10. The keyword is int; this is 

the data type specified for the identifier x. meaning the value is an integer.  

 

Rules for declaring an identifier  

1. First character should be an alphabet or underscore.  

2. Succeeding character can be digits or letters.  

3. Special characters are not allowed except underscore.  

4. Identifiers should not be keyword.  

 

 
 

Special Symbols or Characters: this can be single character or sequence of characters 

having a special built-in meaning in language and typically cannot be used as 

identifiers. Such as: &, %, # etc. These special characters have meanings which are 

predefined in C library when designing the language, these is why they are used in 

particular segment of the code. For instance, the & is only used in printif and scanner 

statement, the % is used to specify the data type (integer data type %d, spring data 

type %S) 

 

Operators: The following are the operators in C language  

1. Arithmetic operators: these are used to perform mathematical operations. Such 

as addition, subtraction, multiplication and modulus.  

 

 

 

 

 

 



Page 10 of 85 
 

 
 

 

 
 

 

 

2. Increment/decrement operators: These operators are used when loops are 

included in the program. Increment operators are use to increase the value of 

a variable by a specific number.  Decrement operators are use to decrease 

the value of a variable by a specific number. 

 

 



Page 11 of 85 
 

Example: 

i++; // increment  

i--; // decrement  

3. Assignment operators: These operators are used to assign values to variable 

in C language.  

Example 

=, == 

int b = 4; 
4. Bitwise operators: These operators are used to perform bit operations. Decimal 

values are converted into binary values which are the sequence of bits and bit 

wise operators work on these bits.   

Bit wise operators in C language are: 

& (bitwise AND) 

| (bitwise OR) 

~ (bitwise NOT) 

^ (XOR) 

<< (left shift) 

>> (right shift) 

 

5. Relational operators: These operators are used to test or define relation 

between two entities or variables.  

Example  

<, >, =, !=, 

 

If (a=<b); 

 
6. Logical operators: These operators are used to perform logical operation on 

a given expressions. There are three logical operators in C language: 

Logic AND (&&) 

Logic OR (||) 

Logic NOT (!)  

  



Page 12 of 85 
 

1.8.  Datatype and Variable Used in C Programming Language  

1.8.1. Datatype  

There are four datatypes in C language: 

1. Basic datatype 

  
2. Derived datatype  

3. Enumeration datatype  

4. Void datatype  

 Table 1  presents these datatype examples  

 

 

1.8.2. Variable  

Variables are defined as the reserved memory space which stores value of a definite 

datatype. The value of the variable is not constant, so it can be changed. The types 

of variables in C language are: 



Page 13 of 85 
 

1. Local variable: these variables are declared inside a code block or a function 

and has it scope limited to that particular block of code or function.   

 

 
In the figure above, the function test is defined and a local variable with int 

datatype is declare within the function.  

 

2. Global variable: these variables are declared outside a code block or a 

function and has it scope across the entire program and allow any function to 

change it value.  

 
 

In the figure above, the function test is defined and a global variable with int 

datatype is declare outside the function.  



Page 14 of 85 
 

 

3. Static variable:  any variable declared with the keyword static is known as 

static variable. These variables retain their declared value throughout the 

entire execution of the program and will not be changed between multiple 

function calls.  

4. External variable: These variables are declared by using the keyword extern. 

A variable can be share between multiple C source file by using external 

variable.   

Example 

 

extern int extern = 10;//(External Variable) 

5. Automatic variable: These variables can be declared by using the keyword 

auto. By default, all the variables define in C language are Automatic 

Variable.   

 

 

Rules for declaring a Variable  

1. A variable can have alphabet, digit and underscore.  

2. A variable name can start with alphabet and underscore only.  

3. No spacing is allowed within the variable name.  

4. A variable name must not be any reserve word or keyword.  

 



Page 15 of 85 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Page 16 of 85 
 

1.9. PREPROCESSOR DIRECTIVES  

These are lines included in a program that begin with the character #, which 

distinguish them from a typical source code text. They are invoked by the complier to 

process some programs before compilation. It is a macro processor used 

automatically by the C compiler to transform user program before actual compilation. 

For instance, stdio.h, means standard input/output; this preprocessor directive 

activates the input and output unit to perform a C programming operation. 

The operating sequence of the preprocessor directive is shown below: 

 

Types of Preprocessor Directives in C Language  

1. #include: this used to paste code of given file into current file. It is used include 

system defined and user defined header files. There are two variants to use 

the #include directive: 

#include <filename> 

#include “filename” 

2. #define: this is used to define constant or macro substitution. It can use any 

basic datatype. Syntax is #define token value. 

3. #undef: is used to undefine the constant or macro defined by #define. The 

syntax is #undef token 

4. #ifdef 

5. #ifndef 

6. #else  

7. #error 



Page 17 of 85 
 

8. #pragma 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Page 18 of 85 
 

2.0. Control statements and Loops  
2.1. Control statements   

These statements enable user to specify the flow of program control. They specify the 

order in which the instruction in a program must be executed. They make it possible 

to make decisions, to perform tasks repeatedly or jump from one section of the code 

to another.  

The variants of the control statements in C language are:  

1. If statement  

2. If-else statement 

3. If-else ladder   

4. Nested if  

5. Switch  

6. Ternary  

7. Break 

 

2.1.1. If control statement  

The if statement in C language is defined as a programming conditional statement 

that, if proved true, it performs an operation or displays information inside the 

statement block.  

This can be explained using the flow chart  

 

For better understanding let write the code: 

 



Page 19 of 85 
 

 

 

 

 

 

 



Page 20 of 85 
 

2.1.2. If-else control statement  

This control statement defines a programming conditional statement that has two 

statement blocks over a condition. If proved true, then the if block is executed and if 

false, then the else block is executed.  

This can be explained using the flow chart  

 

 

For better understanding let write the code: 

 

 



Page 21 of 85 
 

 

 

 

2.1.3. If-else ladder Control Statement 

This control statement defines a programming conditional statement that has multiple 

else-if statement blocks. If any of the condition is true, then the control will exit the 

else-if ladder and execute the next set of statements. 

This can be explained using the flow chart  

 



Page 22 of 85 
 

 

For better understanding let write the code: 

 

 

 

 



Page 23 of 85 
 

2.1.4. Nested If control statement 

This is a programming conditional statement that consist of another if statement within 

the previous if statement.  

 

Nested If control statement flowchart 

 



Page 24 of 85 
 

2.1.5. Ternary Control Statement  

 

This is a programming conditional statement that is similar to if-else statement but 

shorter in code length. In this case the control checks the conditions and executes either 

of the two statements.   

 

 

Ternary Control Statement Flowchart 

 



Page 25 of 85 
 

2.2. Loops  

These are control statements used in C language to perform looping operations while 

a give condition is true. Control exit the loop once the given condition is false. The 

three types of loops in C language are: 

1.  For loop 

2. While loop 

3. Do while loop 

 

2.2.1. For Loop 

This is a precise loop with the syntax: initialization, condition and increment or 

decrement operator. The flowchart is presented below: 

 

For Loop flowchart 

For instance, the code:  

for (i=0; i<=10; i++) 

 i=0 is the initialization value for i 

i<=10 is the condition 

i++ is the increment operator  



Page 26 of 85 
 

 

 

2.2.2. Nested For Loop 

This when a for loop is within an existing for loop. The flowchart below depicts this 

situation: 

 

Nested For Loop flowchart 



Page 27 of 85 
 

 

 

2.2.3. While Loop 

This loop execute itself repeatedly until a given Boolean expression or condition is 

true. 

 

 

 



Page 28 of 85 
 

 

 

2.2.4. Do While Loop 

The difference between the Do While loop and While loop is that the condition is 

stated at the end of the loop. 

 

Do While Loop flowchart 

 



Page 29 of 85 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Page 30 of 85 
 

3.0. Pointers  

These are variables which stores the address of the value of another variable. This 

variable can be of any type e.g. int, char, array etc. the size of the pointer depends 

on the architecture. The pointer in C language can be declared using *(asterisk 

symbol) 

The syntax is: 

float y = 2.1; 

float*u = &y; 

In the above, the value stored in y is 2.1, using the pointer function we can store the 

address of the value stored in y directly.  

The merits of pointers are: 

1.  User can return multiple values from a function  

2. User can access any memory location in the computer’s memory  

3. User can dynamically allocate memories using the malloc() and callc() function 

using pointers  

4. Pointers in C language are widely used in arrays, functions and structures.  

5. It reduces the code and improves performance 

 

 



Page 31 of 85 
 

3.1. Escape Sequence  

These can be defined as combination of backward slash (\) and a letter or digit. 

These sequences are non-printable and are used to communicate with display devices 

or printer by sending non-graphical control characters to specify actions like new line 

and tab space.  

Listed in the below are the escape sequence in C language.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.2. Functions  

These can be defined as a subdivision program of a main program enclosed within 

flower brackets. Functions can be called by the main program to implement its 

functionality. This procedure provides code reusability and modularity. The two 

functions in C language are: 

1. Library function  

2. User-defined functions  

The advantages of functions are: 

1. User can avoid writing the same code repeatedly in a program  



Page 32 of 85 
 

2. Functions can be called any number if times in a program  

3. Program tracking is easier when it is divided into multiple functions 

4. Reusability is the main achievement of C functions.  

Rules for using functions in C language  

1. Function declaration: a function is required to be declared as Global and the 

name of the function, parameters of the function and the return type of the 

function are required to the clearly specified.  

2. Function call: while calling the function from anywhere in the program, car 

should be taken that the data type in the argument list and number of elements 

in the argument list are matching 

3. Function definition: after the function is declared, it is important that the function 

includes parameters declared, code segment and the return value.  

How to use functions in C language?  

1. Functions without arguments and without return values  

2. Functions without arguments and with return values 

3. Functions with arguments and without return values 

4. Functions with arguments and with return values 

 

Calling a function can be by value: 

 



Page 33 of 85 
 

 

 

Calling function by reference: 

 



Page 34 of 85 
 

 

 

 

 

 

 

 

 

 

Introduction to Analysis Software (OCTAVE) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Page 35 of 85 
 

3.0. Getting Started into OCTAVE 
OCTAVE is a mathematical and graphical software package; it has numerical, graphical, and 
programming capabilities. It has built-in functions to do many operations, and there are 
toolboxes that can be added to augment these functions (e.g., for signal processing). There are 
versions available for different hardware platforms, and there are both professional and student 
editions. 
OCTAVE is started just like any other Windows program. When the OCTAVE software is started, 
a window is opened (See Figure 1.1). As shown in the figure, the screen is divided into three 
main elements. These are  
1. File listing in the current directory 
2. Command History Window 
3. Command Window (the main part is the Command Window) 

 

 
Fig. 1.1: The OCTAVE desktop 

  In the Command Window, you should see: 
>> 

The >> is called the prompt. In the Student Edition, the prompt appears as: 
EDU>> 

In the Command Window, OCTAVE can be used interactively. At the prompt, any OCTAVE 
command or expression can be entered, and OCTAVE will immediately respond with the 
result. 



Page 36 of 85 
 

It is also possible to write programs in OCTAVE, which are contained in script files or M-
files. 
The standard mix of menus appears on the top of the OCTAVE desktop that allows you to 
do things like file management and debugging of files you create. Also a drop-down list on 
the upper right side of the desktop allows you to select a directory to work in. 

3.1. Performing Basic Arithmetic In The Command Window  
The Command Window is on the right-hand side of the OCTAVE desktop. Commands are 
entered at the prompt with looks like two successive “greater than” signs: 

>>  
For instance, If you want to find the value of a numerical expression, simply type it in. Let’s say 
we want to know the value of 433.12 multiplied by 15.7. We type 433.12 * 15.7 at the 
OCTAVE prompt and hit the enter key. The result looks like this: 

 
OCTAVE prints out the answer to our query conveniently named ans. This is a variable or 
symbolic name that can be used to represent the value later. Chances are we will wish to use 

our own variable names. So for example, we might want to call a variable𝑥. Suppose we want 
to set it equal to five multiplied by six. To do this, we type the input as 

 
Once a variable has been entered into the system, we can refer to it later. Suppose that we 

want to compute a new quantity that we’ll call𝑦, which is equal to 𝑥 multiplied by 3.56. Then 
we type 

 
Note: OCTAVE does not require you to include spaces in your input. But to enhance the 
readability and professional appearance of our output it is advised to include spaces in your 
input. 

 
3.1.1. Operator Precedence Rules 

Here are some of the common operators that can be used with numeric expressions: 

   
Some operators have precedence over others. The precedence followed in mathematical 
operations by OCTAVE is the same used in standard mathematics, but with the following 
caution for left and right division. That is, exponentiation takes precedence over 
multiplication and division, which fall on equal footing. Right division takes precedence over 
left division. 
Finally, addition and subtraction have the lowest precedence in OCTAVE. To override 
precedence, enclose expression in parentheses. 



Page 37 of 85 
 

 

 
Within a given precedence level, the expressions are evaluated from left to right (this is 
called the associativity). 
Nested parentheses are parentheses inside of others; the expression in the inner 
parentheses is evaluated first. For example, in the expression 5 – (6 *(4 + 2)), first the 
addition is performed, then the multiplication, and finally the subtraction to result in -31. 
Parentheses can also be used simply to make an expression clearer. For example, in the 
expression ((4 + (3 * 5)) –1) the parentheses are not necessary, but are used to show the 
order in which the expression will be evaluated. 

  
Example 1.1 
1. Use OCTAVE to evaluate 

 
The command required to find the value of the first expression is: 

 
 

2. Use OCTAVE to evaluate 

 
The command required to find the value of the first expression is: 

 
 Practice 1.1  

Use OCTAVE to evaluate 



Page 38 of 85 
 

   
 

3.1.2. Variables and Assignment Statements  
In order to store a value in a OCTAVE session, or in a program, a variable is used. One easy 
way to create a variable is to use an assignment statement. The format of an assignment 
statement is: 

  
The variable is always on the left, followed by the assignment operator, = (unlike in 
mathematics, the single equal sign does not mean equality), followed by an expression. The 
expression is evaluated and then that value is stored in the variable. For example, this is the 
way it would appear in the Command Window: 

   
Since the equal sign is the assignment operator, and does not mean equality, the statement 
should be read as “mynum gets the value of 6” (not “mynum equals 6”). 
Note that the variable name must always be on the left, and the expression on the right. An 
error will occur if these are reversed. 

 
Or  

  
OCTAVE will not make 𝑋 the subject of the formula but will return an error statement.  

 
The correct way is to type: 

  
To change a variable, another assignment statement can be used that assigns the value of 
a different expression to it. Consider, for example, the following sequence of statements: 

   



Page 39 of 85 
 

   
It obvious, that OCTAVE stores the most recent information about the particular variable 
name.  
Secondly, to use a variable on the right-hand side of the assignment operator, we must 
assign a value to it previously. So while the following command sequence will generate an 
error: 

  
The correct way is: 

  
In many instances, it is not desirable to have OCTAVE spit out the result of an assignment. 
To suppress OCTAVE output for an expression, simply add a semicolon (;) after the 
expression. 
Consider the cases below:  

   
   

  
We can include multiple assignments on the same line. For example, the following 
expressions are valid 

  
The Workspace Window shows the variables that have been created in the current 
Command Window and their values. 
The following commands relate to variables: 

1. who shows variables that have been defined in this Command Window (this just 
shows the names of the variables) 



Page 40 of 85 
 

2. whos shows variables that have been defined in this Command Window (this shows 
more information on the variables, similar to what is in the Workspace Window) 

3. clear clears out all variables so they no longer exist 
4. clear variablename clears out a particular variable 

If nothing appears when who or whos is entered, that means there aren’t any variables! 
For example, in the beginning of a OCTAVE session, variables could be created and then 
selectively cleared (remember that the semicolon suppresses output): 

  

  
 

3.1.3. Expressions 
Expressions can be created using values, variables that have already been created, 
operators, built-in functions, and parentheses. For numbers, these can include operators such 
as multiplication, and functions such as trigonometric functions. An example of such an 
expression would be: 

    
3.1.4. The FORMAT FUNCTION and ELLIPSIS 
3.1.4.1. ELLIPSIS 

Long assignments can be extended to next line by typing an ellipsis which is just three 
periods in a row. For example: 

 
The ellipsis follows Coach on the line used to define TotalPeopleOnPlane. After you type 
the ellipsis, just hit the enter key. OCTAVE will move to the following line awaiting further 
input. 



Page 41 of 85 
 

3.1.4.2. FORMAT FUNCTION 
The default in OCTAVE is to display numbers that have decimal places with four decimal 
places, as already shown. The format command can be used to specify the output format of 
expressions. There are many options, including making the format short (the default) or 
long and bank. For example, changing the format to long will result in 15 decimal places. 
This will remain in effect until the format is changed back to short, as demonstrated with an 
expression and with the built-in value for pi. 

  

  
The format command can also be used to control the spacing between the OCTAVE 
command or expression and the result; it can be either loose (the default) or compact. 

   
OCTAVE displays large numbers using exponential notation. That is it represents 5.4387 × 
103 as 5.4387e + 003. If you want all numbers to be represented in this fashion, you can 
do so. This type of notation can also be defined using the short (format short e) or long 
formats (format long e). 



Page 42 of 85 
 

    
Also there is format rat. If you type format rat, then OCTAVE will find the closest rational 
expression it can that corresponds to the result of a calculation.  

  
 

3.1.5. Basic Mathematical Definitions 
OCTAVE is equipped with built-in functions (mathematical quantities) that we can use.  

 Example 1.2  
1. Find the volume of a sphere of radius 2 m. 

   The volume of a sphere is given by:  

      

      
Another built-in function is the exponential function. That is, e ≈ 2.718. we can call this 
function e in OCTAVE by typing exp(a) which gives us the value of ea. Here are a few quick 
examples: 

  
To find the square root of a number, we type sqrt. For example 

  
To find the natural log of a number say x, type log(x) 



Page 43 of 85 
 

    
To find the base ten logarithm, type log10(x) 

 
3.1.6. Built-In Functions and Help 

There are many, many built-in functions in OCTAVE. The help command can be used to find 
out what functions OCTAVE has, and also how to use them. For instance, typing help at the 
prompt in the Command Window will show a list of help topics, which are groups of related 
functions. This is a very long list; the most elementary help topics are in the beginning. 
For example, one of these is listed as Octave\elfun; it includes the elementary math functions. 
Another of the first help topics is Octave\ops, which shows the operators that can be used in 
expressions. 
To see a list of the functions contained within a particular help topic, type help followed by 
the name of the topic.  
For example,  

 
will show a list of the elementary math functions. It is a very long list, and is broken into 
trigonometric (for which the default is radians, but there are equivalent functions that instead 
use degrees), exponential, complex, and rounding and remainder functions. 
To find out what a particular function does and how to call it, type help and then the name 
of the function.  
For example, 

 
will give a description of the sin function. 

3.1.6.1. Complex Numbers 
We can also enter complex numbers in OCTAVE. Recall that the square root of –1 is defined 
as: 

  
A complex number is one that can be written in the form 𝑧 =  𝑥 + 𝑖𝑦, where 𝑥 the real is 

part of 𝑧 and 𝑦 is the imaginary part of  𝑧. It is easy to enter complex numbers in OCTAVE, 
by default it recognizes i as the square root of minus one.  
In normal algebra it is written as: 

  
In OCTAVE it is written as: 



Page 44 of 85 
 

  
3.1.7. Fixing Errors  

It’s going to be a fact that now and then you are going to type in an expression with an 
error. If you hit the enter key and then later realize what happened, it’s not necessary to 
retype the line. Just use your arrow keys to move back up to the offending line. Fix your 
error, and then hit enter again and OCTAVE will correct the output. 
 

3.1.8. File Basics 
For instance, you want to save all the expressions and variables you have entered in the 
command window for use at a later time. You can do this by executing the following actions: 

1. Click on the File pull-down menu 
2. Select Save Workspace As… 
3. Type in a file name 
4. Click on the Save button 

This method creates a OCTAVE file which has a .MAT file extension in Windows. If you save 
a file this way, you can retrieve all the commands in it and work with it again just like you 
can when working with fi les in any other computer program. 
Sometimes, especially when working on complicated projects, you won’t want to sit there 
and type every expression in a command window. It might be more appropriate to type a 
long sequence of operations and store them in a fi le that can be executed with a single 
command in the command window. This is done by creating a script file. This type of file is 
known as OCTAVE program and is saved in a file format with a .M extension. For this 
reason, we also call them M-files. We can also create M-files that are function files. From 
what we’ve done so far, you already know how to create a script file. All a script file comes 
down to is a saved sequence of OCTAVE commands. Let’s create a simple script file that 

will compute 𝑒𝑥 for a few values of  𝑥. First, open the OCTAVE editor. Either 

1. Click New → M-File under the File pull-down menu  
2. Or click on the New File icon on our toolbar at the top of the screen 

Now type in the following lines: 

 
Notice the % sign. This line is a comment. This is a line of text that is there for our benefit, 
it’s a descriptive note that OCTAVE ignores. The next line creates an array or set of numbers. 
An array is denoted using square braces [] and by delimiting the elements of the array with 
colons or commas. The final line will tell OCTAVE to calculate the exponential of each 

member of the array, in other words the values  𝑒1,𝑒2,  𝑒3, 𝑒4.  
Save the file by clicking the Save icon in the fi le editor or by selecting Save As from the 
File pull-down menu. Save the file as example1.m in your OCTAVE directory. 
Now return to the OCTAVE desktop command window. Type in example1. If you did 
everything right, then you will see the following output:  



Page 45 of 85 
 

 
We can also use M-fi les to create and store data. For instance, let’s create a set of 
temperatures that we will store in a file. We do this by creating a list of temperatures in 
the file editor 

   
Save this as a fi le that we’ll call TemperatureData.m. We store this file in the OCTAVE 
directory. To access it in the command window, we just type the name of the fi le. OCTAVE 
responds by spitting out the list of numbers: 

  
Now we can use the data by referring to the array name used in the fi le. Let’s create 
another set of numbers called Celsius that converts these familiar temps into the European 
style Celsius temperatures we are so familiar with. This can be done with the following 
command. 
 

 

 
 



Page 46 of 85 
 

4.0. Vectors and Matrices 
4.1. Vectors  

Recall that a vector is a one-dimensional array of numbers (either row or column vector). Either 
column vectors or row vectors can be created using OCTAVE. A column vector can be created 
in OCTAVE by enclosing a set of semicolon delimited numbers in square brackets. Vectors can 
have any number of elements.  

1. Column vector:  To create a column vector with three elements we write: 

 
Basic operations on column vectors can be executed by referencing the variable name 
used to create them. If we multiply a column vector by a number, this is called scalar 
multiplication. For example, to multiply vector a above by a number say 3 to produce 
another vector we write:  

 

 

 
2. Row vector: To create a row vector, we enclose a set of numbers in square brackets but 

this time use a space or comma to delimit the numbers. For example 
 

 
The transpose operation can be used to turn a column vectors into row vectors and vice versa. 
Suppose that we have a column vector with n elements denoted by: 

  

The transpose is given by    
In OCTAVE, the transpose operation is represented with a single quote or tick mark (‘). 
For instance, transpose of a column vector produces a row vector: 



Page 47 of 85 
 

    
And taking transpose of a row vector to produce a column vector 

   
 
Mathematical operations such as addition or subtraction of two vectors can be done to produce 
another. However, to perform this operation the vectors must both be of the same type and the 
same length, so we can add two column vectors together to produce a new column vector:   

   
Or we can subtract two row vectors to produce a new row vector: 

   
4.1.1. Generating Larger Vectors from Available Variables 

In OCTAVE vectors can be attach together to create new ones. Let u and v be two column 
vectors with m and n elements respectively that we have created in OCTAVE. A third vector 
w can be created whose first m elements are the elements of u and whose next n elements 
are the elements of v. The newly created column vector has m + n elements. However, to 
perform this operation the vectors must both be of the same type. This is done by writing w = 
[u; v]. For example: 
 



Page 48 of 85 
 

   
This can also be done using row vectors: 

   
 

4.1.2. Generating Vectors with Uniformly Spaced Elements 

It is possible to create a vector with elements that are uniformly spaced by an increment 𝒒, 

where 𝒒 is any real number. To create a vector 𝑥 with uniformly spaced elements where 𝑥𝑖 

is the first element and 𝑥𝑒 is the final element, the syntax is: 

 
 For example, we can create a list of even numbers from 0 to 10 by writing: 

    
This approach can also be used for some vectors with a small number of elements. First we 

create a set of 𝑥 values: 

 
The set of 𝑥 values above can use to perform other operations. Suppose that 𝑦 =  𝑒𝑥. Then 
we have: 



Page 49 of 85 
 

 

 
Or we have 𝑦 =  𝑥2

 : 

 >> y = x. ^2 

 
Note that when squaring a vector in OCTAVE, a period must precede the power operator 
(. ^). If we just enter >> y = x^2, OCTAVE gives us an error message: 

  
 
In furtherance to uniform increment, we can also use a negative increment. For instance, let’s 
create a list of numbers from 100 to 80 decreasing by 5: 

  
4.1.2.1. The linspace, logspace, length, max, min and abs commands  

1. The linspace function creates a linearly spaced vector; linspace(𝒙, 𝒚, 𝒏)creates a vector 

with n values in the inclusive range from 𝑥 to 𝑦. For example, the following creates a 
vector with five values linearly spaced between 3 and 15, including the 3 and 15.  

 
However, linspace(𝑎, 𝑏) creates a row vector of 100 regularly spaced elements 

between 𝑎 and 𝑏.  
Note that in both cases OCTAVE determines the increment in order to have the 
correct number of elements.  



Page 50 of 85 
 

2. OCTAVE also allows you to create a row vector of 𝑛 logarithmically spaced elements 
by typing  

   
This creates 𝑛 regularly spaced elements between 10𝑎 and 10𝑏. For example: 

 
 
3. The length command returns the number of elements that a vector contains. For example:  

 
4. We can find the largest elements in a vector using the max command. For example: 

 
 

5. We can find the smallest elements in a vector using the min command For example: 

 

 
6. We can use the abs command to return the absolute value of a vector, which is a vector 

whose elements are the absolute values of the elements in the original vector, i.e.:  

 
4.1.2.2. Vector Magnitude  

To find the magnitude of a vector we can employ two operations. Recall that the magnitude 
of a vector v 



Page 51 of 85 
 

    
Is given by  

 
 

To perform this operation, we will first take the dot product of a vector with itself. This is 
done by using array multiplication (.*). First let’s define a vector: 

   
Taking the array multiplication  

   

     
This produces a vector whose elements are  𝑣1

2, 𝑣2 
2 ,…. To get the summation we need, we 

can use the sum operator: 

  
Then the magnitude of the vector is the square root of this quantity: 

   
If a vector contains complex numbers, then more care must be taken when computing the 
magnitude. When computing the row vector, we must compute the complex conjugate 
transpose of the original vector. For example, if: 

   
Then to compute the magnitude, we need the following vector: 

   
Then the summation we need to compute is: 

  
Hence the magnitude of a vector with complex elements is: 



Page 52 of 85 
 

   
From above its clear that using the complex conjugate transpose when computing our sum 
ensures that the magnitude of the vector will be real. Performing the same operation in 
OCTAVE, first we enter this column vector: 

   
We will compute the complex conjugate of the vector, and form the sum. We can get the 
complex conjugate of a vector with the conj command:  

   
Now we obtain the correct answer, and can get the magnitude: 

 
The above process can be done in one step:  

 
 

4.1.3. Vector Dot and Cross Products 

1. The dot product between two vectors 𝐴 =  (𝑎1 𝑎2  … 𝑎𝑛) and 𝐵 =  (𝑏 1𝑏2  … 𝑏𝑛) is 
given by: 

  
In OCTAVE, the dot product of two vectors 𝑎, 𝑏 can be calculated using the    dot(𝑎, 𝑏) 
command. The dot product between two vectors is a scalar, i.e. it’s just a number.  

  
The dot product can be used to calculate the magnitude of a vector. All that needs to be 

done is to pass the same vector to both arguments. Consider the vector 𝐽 above: 

  

  



Page 53 of 85 
 

  
   We can calculate the magnitude of the vector this way 

 
   The dot operation works correctly with vectors that contain complex elements: 

   
2. The cross product. To compute the cross product, the vectors must be three dimensional. 

For example: 

 
4.1.4. Referencing Vector Components 

There are several techniques that can be used to reference one or more of the components 

of a vector. The 𝑖𝑡ℎ component of a vector 𝑣 can be referenced by writing 𝑣(𝑖). For 
example: 

 
Referencing the vector with a colon, such as 𝑣(: ); tells OCTAVE to list all of the components 
of the vector: 
   
   

 

 

 

 

 

 

We can also pick out a range of elements out of a vector. We can 

reference   components four to six by writing 𝐴 (4: 6) and use these to create a new vector 
with three components: 



Page 54 of 85 
 

 

4.2. Matrices 
A matrix is a two-dimensional array of numbers. To create a matrix in OCTAVE, we enter 
each row as a sequence of comma or space delimited numbers, and then use semicolons to 
mark the end of each row. For example, consider: 

  
This matrix is entered in OCTAVE using the following syntax: 

  
Or consider the matrix B below: 

  

 
Many of the previously discussed operations on vectors can equally be carried out on matrices. 
For instance, scalar multiplication can be carried out referencing the name of the matrix: 

  
Similarly, matrices of the same type and length can be added or subtracted. 

  



Page 55 of 85 
 

The transpose operation can be done in matrix. The transpose operation switches the rows 
and columns in a matrix, for example: 

  
Just as we did in vectors, we use the same notation of transpose in matrix (‘): 

  
If the matrix contains complex elements, the transpose operation will compute the conjugates: 
 

 
However, to compute the transpose of a matrix with complex elements without computing the 
conjugate, we use (.’): 
 
 >> D = C.’ 

 
We can perform array multiplication. Note that this is not matrix multiplication. We use the 
same notation used when multiplying two vectors together (.*). For example: 

  

What the operation 𝐴.∗ 𝐵 does is it performs component by component multiplication. 
Theoretically it works as follows: 



Page 56 of 85 
 

 

4.2.1. Matrix Multiplication 

Consider two matrices 𝐴 and 𝐵. If 𝐴 is an 𝑚 ×  𝑝 matrix and 𝐵 is a 𝑝 ×  𝑛 matrix, they 

can be multiplied together to produce an 𝑚 ×  𝑛 matrix. To do this in OCTAVE, we leave 

out the period (.) and simply write 𝐴 ∗ 𝐵. However, if the dimensions of the two matrices are 
not the same, the operation will generate an error.  
Let’s consider two matrices: 

  
These are both 2 ×  2 matrices, so matrix multiplication is permissible. The array 

multiplication of 𝐴 and 𝐵 will give:  

 
The matrix multiplication will give: 

 
Now we leave out the ‘.’ character and execute matrix multiplication, which produces quite 
a different answer. 
 
Consider: 

  
The matrix 𝐴 is a 3 ×  2 matrix, while 𝐵 is a 2 ×  3 matrix. Since the number of columns of 

𝐴 matches the number of rows of 𝐵, we can calculate the product 𝐴𝐵. In OCTAVE: 

 
While matrix multiplication is possible in this case, array multiplication is not. To use array 
multiplication, both row and column dimensions must agree for each array.  
 
 



Page 57 of 85 
 

4.2.2. Further Matrix Operations  
OCTAVE also allows several operations on matrices. For example, OCTAVE allows you to 
add a scalar to an array (vector or matrix). This operation works by adding the value of 
the scalar to each component of the array. Here is how it works with a row vector: 

  
We can also perform left and right division on an array. This works by matching component 
by component, so the arrays have to be of the same size. For example, we tell OCTAVE to 
perform array right division by typing (./ ): 

 
Array left division is indicated by writing C = A.\B (this is the same as C = B./A): 

 
Basically any mathematical operation you can think of can be implemented in OCTAVE with 
arrays. For instance, we can square each of the elements: 

  

4.2.3. Special Matrix 
The identity matrix is a square matrix that has ones along the diagonal and zeros elsewhere. 
To create an n × n identity matrix, type the following OCTAVE command: 

  
To create a 4 𝑥 4 identity matrix we write: 

 



Page 58 of 85 
 

In addition, to create an n × n matrix of zeros, we type zeros(𝑛). We can also create a 

𝑚 ×  𝑛 matrix of zeros by typing zeros(𝑚, 𝑛). It is also possible to generate a matrix 

completely filled with 1’𝑠. This is done by typing ones(𝑛) or ones(𝑚, 𝑛) to create 𝑛 ×  𝑛 

and 𝑚 ×  𝑛 matrices filled with 1’𝑠, respectively.  
 

4.2.4. Referencing Matrix Elements 
Individual elements and columns in a matrix can be referenced using OCTAVE. Consider the 
matrix: 

 
We can pick out the element at row position m and column position n by typing 𝐴(𝑚, 𝑛). 
For example: 

 
To reference all the elements in the 𝑖𝑡ℎ column we write 𝐴(: , 𝑖). For example, we can pick 
out the second column of A: 

 
To pick out the elements in the 𝑖𝑡ℎ through 𝑗𝑡ℎ columns we type𝐴(: , 𝑖: 𝑗). Here we return the 
second and third columns: 

  

We can pick out pieces or submatrices as well. Continuing with the same matrix, to pick out 
the elements in the second and third rows that are also in the first and second columns, we 
write: 

 

We can change the value of matrix elements using these references as well. Let’s change 
the element in row 1 and column 1 to –8: 



Page 59 of 85 
 

 

To create an empty array in OCTAVE, simply type an empty set of square braces []. This 
can be used to delete a row or column in a matrix. Let’s delete the second row of A: 

 

This has turned the formerly 3 × 3 matrix into a 2 × 3 matrix. 
It’s also possible to reference rows and columns in a matrix and use them to create new 

matrices. In this example, we copy the first row of 𝐴 four times to create a new matrix: 

  
This example creates a matrix out of both rows of A: 

 
 

4.2.5. Finding Determinants and Solving Linear Systems 
The determinant of a square matrix is a number. For a 2 × 2 matrix, the determinant is 
given by: 

  

To calculate the determinant of a matrix A in OCTAVE, simply write det(𝐴). Here is the 
determinant of a 2 × 2 matrix: 

 

To find the determinant of a 4 × 4 matrix is also done the same way: 



Page 60 of 85 
 

 

Determinants is an important to linear system of equation because it is use to determine if a 

linear system of equations has a solution. A linear system of equation as a solution if 𝑑𝑒𝑡 ≠
0. 
Consider the following set of equations: 

  
 
Recall that  
To find a solution to a system of equations like this, we can use two steps. 
First we find the determinant of the coefficient matrix A, which in this case is: 

  
In OCTAVE, the determinant of the A matrix is: 

  
Since the determinant is nonzero solution exists.  
The coefficient matrix B 

𝑏 =  [
44
11
5

] 

 
This solution is the column vector:  

  
OCTAVE allows us to generate the solution readily using left division. First we create a 
column vector of the numbers on the right-hand side of the system. We find: 

 
 



Page 61 of 85 
 

4.2.6. Finding the Rank of a Matrix 
The rank of a matrix is a measure of the number of linearly independent rows or columns in 
the matrix. If a vector is linearly independent of a set of other vectors that means it cannot 
be written as a linear combination of them. Simple example: 

  
Looking at these column vectors we see that: 

  
Hence w is linearly dependent on u and v, since it can be written as a linear combination of 
them. On the other hand: 

  
form a linearly independent set, since none of these vectors can be written as a linear 
combination of the other two. 
Consider the matrix: 

  
The second row of the matrix is clearly twice the first row of the matrix. Hence there is only 
one unique row and the rank of the matrix is 1. Let’s check this in OCTAVE. We compute the 
rank in the following way: 

  
Another example: 

  
The third column is three times the first column: 

  
Therefore, it’s linearly dependent on the other two columns (add zero times the second 

column). The other two columns are linearly independent since there is no constant α such 

that: 

  



Page 62 of 85 
 

So we conclude that there are two linearly independent columns, and rank(𝐵) = 2. Let’s 
check it in OCTAVE: 

  
Now let’s consider the linear system of equations with m equations and n unknowns: 

  
The augmented matrix is formed by concatenating the vector b onto the matrix A: 

  
A linear system of equation has a solution if and only if rank(𝐴) = rank(𝐴 𝑏) (i.e. the rank 

equals the number of unknowns in the equation). If the rank is equal to 𝑛, then the system 
has a unique solution. 

 If rank(𝐴) = rank(𝐴 𝑏) but the rank <  𝑛, (i.e. rank is equal but less than the number of 
unknowns in the equation) there are an infinite number of solutions. If we denote the rank 
by r, then r of the unknown variables can be expressed as linear combinations of n – r of 
the other variables. 
The above facts can use these facts to analyze linear systems with relative ease. If the rank 
condition is met and the rank is equal to the number of unknowns, the solution can be 
computed by using left division.  
Consider the system: 

  
The coefficient matrix is: 

  
We also have: 

  
And the augmented matrix is: 

  
The first step is to enter these matrices in OCTAVE: 

 
We can create the augmented matrix by using concatenation: 



Page 63 of 85 
 

  
Now let’s check the rank of A: 

  
The rank of the augmented matrix is: 

  
Since the ranks are the same, a solution exists. We also note that the rank r satisfies             r 
= n since there are three unknown variables. This means the solution is unique. We find it by 
left division: 

  
4.2.7. Finding the Inverse of a Matrix and the Pseudoinverse 

The inverse of a matrix A is denoted by A−1 such that the following relationship is satisfied: 

  
Consider the following matrix equation: 

  
If the inverse of A exists, then the solution can be readily written as: 

  
The inverse of a matrix A can be calculated in OCTAVE by writing: 

  
The inverse of a matrix does not always exist. In fact, we can use the determinant to 

determine whether or not the inverse exists. If det(𝐴) = 0, then the inverse does not exist 
and we say the matrix is singular. 
1. Let’s get started by calculating a few inverses just to see how easy this is to do in 

OCTAVE. Starting with a simple 2 × 2 matrix:  

  
First we check for the determinant of the A matrix: 



Page 64 of 85 
 

  
Since det(𝐴) ≠ 0, we can fi nd the inverse. OCTAVE tells us that it is: 

  
2. Let’s consider a 4 × 4 case in OCTAVE. 

First we create the matrix: 

 
Checking its determinant we find: 

  
Since det(S) ≠ 0, the inverse must exist. OCTAVE spits it out for us: 

 
3. Now let’s look at how we can solve a system of equations using the inverse. Consider: 

  
The coefficient matrix is: 

  
The vector b for the system Ax = b is: 

  
First let’s check the determinant of A to ensure that the inverse exists: 



Page 65 of 85 
 

  
Since the inverse exists, we can generate the solution readily in OCTAVE: 

  

We can only use the method described above, multiplying by the inverse of the coefficient 
matrix to obtain a solution, if the coefficient matrix is square. This means for the system of 
equations, the number of equations equals the number of unknowns.  
If there are fewer equations than unknowns, the system is called underdetermined. This means 
that the system has an infinite number of solutions. This is because only some of the unknown 
variables can be determined. The variables that remain unknown can assume any value; hence 
there are an infinite number of solutions. We take a simple example: 

 
From above we know that: 

  
In this system, while we can find values for two of the variables (x and z), the third variable y 
is undetermined. We can choose any value of y we like, and the system will have a solution.  
Another case where an infinite number of solutions exist for a system of equations and unknowns 

is when det(𝐴) = 0. 
Here the pseudoinverse comes in handy. This solution gives the minimum norm solution for real 
values of the variables. That is, the solution vector x is chosen to have the smallest norm such 
that the components of x are real.  
Let’s consider a linear system of equations: 

  
Obviously this system has an infinite number of solutions. We enter the data: 

  
Computing the rank, we have: 

  



Page 66 of 85 
 

Since these ranks are equal, a solution exists. We can have OCTAVE generate a solution using 
left division: 

  
OCTAVE has generated a solution by setting one of the variables (z in this case) to zero. This is 
typically what it does in cases like these, if you try to generate a solution using left division. The 
solution is valid of course, but remember it only holds when z = 0, and z can be anything. 
We can also solve the system using the pseudoinverse. We do this by typing: 

  
OCTAVE uses the Moore-Penrose pseudoinverse to calculate pinv. 

4.2.8. Matrix Decompositions 
In this section, we will take a look at LU decomposition and see how to use it to solve a linear 
system of equations in OCTAVE. We can find the LU decomposition of a matrix A by writing: 

  
For example, let’s find the LU decomposition of: 

  
We enter the matrix and find: 

  
We can use the LU decomposition to solve a linear system. Suppose that A was a coefficient 
matrix for a system with 

  
The solution can be generated with two left divisions: 



Page 67 of 85 
 

  
We find: 

  
Consider the system: 

  

 
Now let’s find the LU decomposition of A: 

  
Now we use these matrices together with left division to generate the solution: 

 
 



Page 68 of 85 
 

 
 

 
 
 
 
 



Page 69 of 85 
 

5.0. Plotting and Graphics 
5.1. Basic 2D Plotting 
Plotting a function in OCTAVE involves the following three steps: 
 1. Define the function 
 2. Specify the range of values over which to plot the function 
 3. Call the OCTAVE plot(x, y) function 
When specifying the range over which to plot the function, we must also tell OCTAVE what 
increment we want it to use to evaluate the function. Using smaller increments will result in plots 
with a smoother appearance. If the increment is smaller, OCTAVE will evaluate the function at 
more points. But it’s generally not necessary to go that small.  

To plot the function 𝑦 =  𝑐𝑜𝑠(𝑥) over the range 0 ≤  𝑥 ≤  10. to start, we want to define this 
interval and tell OCTAVE what increment to use. The interval is defined using square brackets 
[] that are filled in the following manner: 

 
1. For example, if we want to tell OCTAVE to plot over 0 ≤ x ≤ 10 with an interval of 0.1, 

we type: 

  
To assign this range to a variable name, we use the assignment operator. We also do this 
to tell OCTAVE what the dependent variable is and what function we want to plot. Hence 

to plot  𝑦 =  𝑐𝑜𝑠(𝑥), we enter the following commands: 

  
Notice that we ended each line with semicolons. Remember, this suppresses      OCTAVE 
output. 

  
 After typing the plot command, hit the enter key. After a moment OCTAVE will open a new 
window on the screen with the caption Figure 1. The plot is found in this window. For the 
example we used, we obtain the plot shown in Figure 3-1. 

 



Page 70 of 85 
 

Figure 3-1 plot of 𝑦 =  𝑐𝑜𝑠(𝑥) generated by OCTAVE for 0 ≤ x ≤ 10 
 

The next thing you might want to do is generate a plot that had the axes labeled. This can be 
done using the xlabel and ylabel functions. These functions can be used with a single argument, 
the label you want to use for each axis enclosed in quotes. 
Place the xlabel and ylabel functions separated by commas on the same line as your plot 
command. For example, the following text generates the plot shown in Figure 3-2: 
 

 

 
Figure 3-2 Sprucing up the plot with axis labels 

 

2. Plot 𝑦 =  𝑡𝑎𝑛ℎ(𝑥) over the range −6 ≤ x ≤ 6 with a grid display. First we define our 
interval: 

 

 
Now we will call the grid command with the plot command  

 



Page 71 of 85 
 

 
Figure 3-3 A plot made with the grid on command 

 
5.1.1. The Axis Commands 
The axes used in 2D plot can be adjusted in OCTAVE using the following commands:  

i. If we add axis square (is the default plot axis type) to the line containing the plot 
command, then OCTAVE will generate a square plot.  

ii. If we type axis equal, then OCTAVE will generate a plot that has the same scale factors 
and tick spacing on both axes. 

Using the  𝑦 =  𝑡𝑎𝑛ℎ(𝑥) example, plotted in fig 3-3 above: If we run this plot with axis square, 
we will get the same plot that we did using the default settings.  
But suppose that we typed: 

 

 

 
In this case, we get the plot shown in Figure 3-4. Notice that the spacing used for the y axis in 
Figure 3-3 and Figure 3-4 are quite different. In the first case, the spacing used on the vertical 
or y axis is different than the spacing used on the x axis.  
In contrast, in Figure 3-4, the spacing is identical. 
 



Page 72 of 85 
 

 
Figure 3-4 Plotting y = tanh(x) using the axis equal option 

 
Obviously from this dramatic example, we can use the axis command to generate plots that 
differ quite a bit in appearance. Hence we can use the command to play with different plot 
styles and select what we need for the particular application. 
To let OCTAVE set the axis limits automatically, type axis auto. This isn’t necessary, of course, 
unless you’ve been playing with the options described here. 
 
5.1.2. Setting Axis Scales 
To set a plot range, this is done by calling axis command in the following way: 

 
For instance, to generate a plot of 𝑦 =  𝑠𝑖𝑛(2𝑥 +  3) for 0 ≤ x ≤ 5 we might consider that 

the function ranges over −1 ≤ y ≤ 1. We can set the y axis to only show these values by using 
the following sequence of commands: 

 
This will generate the plot shown below: 



Page 73 of 85 
 

 
A plot generated manually setting the limits on the 

x and y axes for a plot of y = sin(2x + 3) for 0 ≤ x ≤ 5 
 

5.2. Showing Multiple Functions on One Plot 
Often time, it is required to plot more than one curve on a single graph. The procedure used to 
do this in OCTAVE is fairly easy.  
For instance, consider the functions:  

  
In this case let’s plot the two functions over 0 ≤ t ≤ 5 
 
Step  
1. Define the intervals: 

 
2. Define the two functions: 

 
3. Recall, to call the plot command we type plot(x, y). To plot multiple functions, we simply call 

the plot(x, y) command with multiple pairs x, y defining the independent and dependent 
variables used in the plot in pairs. This is followed by a character string enclosed in single 
quotes to tell us what kind of line to use to generate the second curve. In this case we have: 

        
This tells OCTAVE to generate plots of 𝑓(𝑡) and 𝑔(𝑡) with the latter function displayed as a 
dashed line. 



Page 74 of 85 
 

 
Figure 3-4 Plotting two curves on the same graph 

 
OCTAVE has four basic line types that can be used to define a plot. These are, along with the 
character strings, used to define them in the plot command: 

1. Solid line ′-′   (default) 

2. Dashed line ′--′ 
3. Dash-dot line ′-.′ 

4. Dotted line ′:′ 

We can generate same graph as in Figure 3-4 making the curve 𝑓(𝑡)  =  𝑒−𝑡 appear with a 
dotted line. The command is: 

 
This generates the plot shown in Figure 3-5 



Page 75 of 85 
 

 
Figure 3-6 Using a dotted line to represent 𝑓(𝑡)  =  𝑒−𝑡 and a dashed line to 

represent 𝑔(𝑡)  = 𝑒−2𝑡 
5.3. Adding Legends 
A legend allows the reader of a plot to identify curves within the plot. For instance, let plot 

curve of two hyperbolic functions 𝑠𝑖𝑛ℎ(𝑥) and 𝑐𝑜𝑠ℎ(𝑥) for 0 ≤ x ≤ 2.  
Step  
1. First we define x:  

 
2. Then, define the functions: 

 
3. Note: The legend command is simple to use. Just add it to the line used for the plot(x, y) 

command and add a text string enclosed in single quotes for each curve you want to label. 
In our case we have:  

  
We just add this to the plot command. For this example, we include x and y labels as well, 
and plot the curves using a solid line for the first curve and a dot-dash for the second curve: 

 



Page 76 of 85 
 

 

Figure 3-6 A plot of two curves that includes a legend 

Note: the legend can be dragged and placed at any convenient place within the plot by 

just holding the mouse pointer over the legend and drag it to the location where you want it to 

display. 

5.4. Setting Colors 

The color of each curve can be set automatically by OCTAVE or we can manually select which 

color we want. This is done by enclosing the appropriate letter assigned to each color used by 

OCTAVE in single quotes immediately after the function to be plotted is specified. 

For instance, let consider two hyperbolic functions 𝑠𝑖𝑛ℎ(𝑥) and 𝑐𝑜𝑠ℎ(𝑥) for -5 ≤ x ≤ 5.  

Step  
1. First we define x:  

 
2. Then, define the functions: 

 
3. Now we will generate the plot representing y with a red curve and z with a blue curve. We 

do this by following our entries for y and z in the plot function by the character strings ′r′ 

and ′b′ respectively. The command looks like this: 

 
In addition to the color specification we can equally specify the curve type alongside the 

color. So let’s use the colors red and blue for the curves, and set the 𝑐𝑜𝑠ℎ function (the blue 

curve) to draw with a dashed line. 

 
This gives us the plot shown in Figure 3-7 



Page 77 of 85 
 

 
Figure 3-7 A plot generated setting colors and line types with the same command 

OCTAVE gives the user eight basic color options for drawing curves. These are shown with their 

codes in Table 3-1. 

Table 3-1 OCTAVE indicators for selecting plot colors. 

 

The plot symbols, or markers, that can be used are: 



Page 78 of 85 
 

 

Simple Related Plot Functions 
Other functions that are useful in customizing plots are clf, figure, hold, legend, and grid. Brief 
descriptions of these functions are given here; you can use help to find out more about them: 

1. clf clears the Figure Window by removing everything from it. 
2. figure creates a new, empty Figure Window when called without any arguments. Calling it 

as figure(n) where n is an integer is a way of creating and maintaining multiple Figure 
Windows, and of referring to each individually.  

3. hold is a toggle that freezes the current graph in the Figure Window, so that new plots will 
be superimposed on the current one. Just hold by itself is a toggle, so calling this function 
once turns the hold on, and then the next time turns it off. Alternatively, the commands hold 
on and hold off can be used.  

4. legend displays strings passed to it in a legend box in the Figure Window, in order of the 
plots in the Figure Window. 

5. grid displays grid lines on a graph. Called by itself, it is a toggle that turns the grid lines 
on and off. Alternatively, the commands grid on and grid off can be used. 

 

5.5. Plotting Discrete Data 

Plotting of graphs with discrete values of x and y is common place in practical analysis of data 

and OCTAVE also makes it possible to plot such data with relative ease. The 𝒑𝒍𝒐𝒕 (𝒙, 𝒚) 

command can be used to plot a discrete set of data points and connect them with a line.  

Consider the table below as an example:  

X axis  Y axis  

1 50 

2 98 

3 75 

4 80 

5 98 



Page 79 of 85 
 

The task is for us to plot the data using OCTAVE. 

Step  

Define two arrays containing the list of students and the scores on the test.  

 
Since we aren’t modeling a continuous function, it’s not necessary to specify an increment. 

So by default the increment is 1 and OCTAVE will generate 5 points. Next we put in the 

scores that correspond to each point; these are the y values, which we just create as a row 

vector.  

 
>>  𝑝𝑙𝑜𝑡(𝑥, 𝑦,′ 𝑘𝑜′, 𝑥, 𝑦,′ 𝑘′), 𝑎𝑥𝑖𝑠 𝑎𝑢𝑡𝑜, 𝑡𝑖𝑡𝑙𝑒(′𝑙𝑖𝑛𝑒 𝑔𝑟𝑎𝑔ℎ′), 𝑥𝑙𝑎𝑏𝑒𝑙(′𝑥′), 𝑦𝑙𝑎𝑏𝑒𝑙(′𝑦′) 

 

 
 

The same example can be used to plot a bar chart by calling the 𝒃𝒂𝒓 (𝒙, 𝒚) command  

>>

  𝑏𝑎𝑟(𝑥, 𝑦), 𝑡𝑖𝑡𝑙𝑒(′𝑙𝑖𝑛𝑒 𝑔𝑟𝑎𝑔ℎ′), 𝑥𝑙𝑎𝑏𝑒𝑙(′𝑥′), 𝑦𝑙𝑎𝑏𝑒𝑙(′𝑦′) 



Page 80 of 85 
 

 

In addition, OCTAVE also plot discrete data points using the stem plot command. The stem plot is a 

kind of discrete data plot used by engineers to show and analysis signals of some systems. The stem 

plot generates a graph of a function with data at certain discrete points. At each point, a vertical 

line extends from the horizontal or x axis up to the value of the function at that point, which is 

marked off with a selected marker. For instance, consider the function 𝑓(𝑡) = 𝑒𝛽𝑡 sin(𝑡
4⁄ )  β = 

0.01 and assume it represents the response of a spring to some force. This response might have 

been produced experimentally or in a computer simulation. Suppose that the system was sampled 

every 5 seconds for 200 seconds. Assume we’ve got this data by first generating a set of sampling 

times. We simply create our array of times with a time step of 5 seconds: 

>>  𝑡 =  [0: 5: 200]; 

>>   𝑓 =  𝑒𝑥𝑝(0.01 ∗ 𝑡).∗ 𝑠𝑖𝑛(𝑡/4); 

>>  𝑠𝑡𝑒𝑚(𝑡, 𝑓), 𝑥𝑙𝑎𝑏𝑒𝑙(′𝑡𝑖𝑚𝑒(𝑠𝑒𝑐)′), 𝑦𝑙𝑎𝑏𝑒𝑙(′𝑠𝑝𝑟𝑖𝑛𝑔 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒′) 

 



Page 81 of 85 
 

 

5.6. Three-Dimensional (3D) Plots 

OCTAVE has many functions that will display three-dimensional plots. Most of these functions 

have the same name as the corresponding two-dimensional plot function with a 3 at the end. 

For example, the three-dimensional line plot function is called plot3. Other functions include 

bar3, pie3, and stem3.  

Vectors representing x, y, and z coordinates are passed to the plot3 and stem3 functions. These 

functions show the points in three-dimensional space. Clicking on the rotate 3D icon in the plot 

window allows the user to rotate the view to see the plot from different angles. Also, using the 

grid function makes it easier to visualize, as seen in Figure 3-8. 

For instance, consider the program below: 

>>  𝑥 =  [1: 5]; 

>>  𝑦 =  [0 − 2 4 11 3]; 

>>  𝑧 =  [2: 2: 10]; 

>>  𝑝𝑙𝑜𝑡3(𝑥, 𝑦, 𝑧, ′𝑘 ∗ ′)  

>>  𝑔𝑟𝑖𝑑 𝑜𝑛 
This will generate the 3D plot below. 

 
Figure 3-8 Three-dimensional plots with a grid on.  

 

For the bar3 function, x and y vectors are passed and the function shows threedimensional bars 

as seen in Figure 3-9. 

>>  𝑥 =  [1: 6]; 

>>  𝑦 =  [33 11 5 9 22 30]; 

𝑏𝑎𝑟3(𝑥, 𝑦); 



Page 82 of 85 
 

 
Figure 3-9 Three-dimensional bar chart 

Similarly, the pie3 function shows data from a vector as a three-dimensional pie as seen in 

Figure 3-10. 

>>  𝑝𝑖𝑒3([3 10 5 2]) 

 
Figure 3-10 Three-dimensional pie charts. 

 

The 3D plot can also be generated in OCTAVE calling the 𝒎𝒆𝒔𝒉(𝒙, 𝒚, 𝒛) command. Consider the 

function 𝑧 =  𝑐𝑜𝑠(𝑥)𝑠𝑖𝑛(𝑦) 𝑎𝑛𝑑 − 2𝜋 ≤  𝑥, 𝑦 ≤  2𝜋. In this case the 𝒎𝒆𝒔𝒉𝒈𝒓𝒊𝒅 command will 

specify the x and y axis.  



Page 83 of 85 
 

We enter: 

>>  [𝑥, 𝑦]  =  𝑚𝑒𝑠ℎ𝑔𝑟𝑖𝑑(−2: 0.1: 2); 

>>  [𝑥, 𝑦]  =  𝑚𝑒𝑠ℎ𝑔𝑟𝑖𝑑(−2 ∗ 𝑝𝑖: 0.1: 2 ∗ 𝑝𝑖); 

>>  𝑧 =  𝑐𝑜𝑠(𝑥).∗ 𝑠𝑖𝑛(𝑦); 

>>  𝑚𝑒𝑠ℎ(𝑥, 𝑦, 𝑧), 𝑥𝑙𝑎𝑏𝑒𝑙(′𝑥′), 𝑦𝑙𝑎𝑏𝑒𝑙(′𝑦′), 𝑧𝑙𝑎𝑏𝑒𝑙(′𝑧′) 

 
Figure 3-11 Plotting z = cos(x)sin(y) using the mesh command 

 

 

We can also plot the function using shadeed surface plot. This is done by calling either the surf or 

surfc or surfl command.  

>>  [𝑥, 𝑦]  =  𝑚𝑒𝑠ℎ𝑔𝑟𝑖𝑑(−2: 0.1: 2); 

>>  [𝑥, 𝑦]  =  𝑚𝑒𝑠ℎ𝑔𝑟𝑖𝑑(−2 ∗ 𝑝𝑖: 0.1: 2 ∗ 𝑝𝑖); 

>>  𝑧 =  𝑐𝑜𝑠(𝑥).∗ 𝑠𝑖𝑛(𝑦); 

>>  𝑠𝑢𝑟𝑓(𝑥, 𝑦, 𝑧), 𝑥𝑙𝑎𝑏𝑒𝑙(′𝑥′), 𝑦𝑙𝑎𝑏𝑒𝑙(′𝑦′), 𝑧𝑙𝑎𝑏𝑒𝑙(′𝑧′) 



Page 84 of 85 
 

 
 

Figure 3-12 The same function plotted using surf(x, y, z)  

 

Finally, surfl (the ‘l’ tells us this is a lighted surface) is another command that generate nice option 

that gives the appearance of a three-dimensional illuminated object. Use this option if 

you would like a three-dimensional plot without the mesh lines shown in the other figures. Plots can 

be generated in color or grayscale. For instance, we use the following commands: 

>>  [𝑥, 𝑦]  =  𝑚𝑒𝑠ℎ𝑔𝑟𝑖𝑑(−2: 0.1: 2); 

>>  [𝑥, 𝑦]  =  𝑚𝑒𝑠ℎ𝑔𝑟𝑖𝑑(−2 ∗ 𝑝𝑖: 0.1: 2 ∗ 𝑝𝑖); 

>>  𝑧 =  𝑐𝑜𝑠(𝑥).∗ 𝑠𝑖𝑛(𝑦); 

>>  𝑠𝑢𝑟𝑓𝑙(𝑥, 𝑦, 𝑧), 𝑥𝑙𝑎𝑏𝑒𝑙(′𝑥′), 𝑦𝑙𝑎𝑏𝑒𝑙(′𝑦′), 𝑧𝑙𝑎𝑏𝑒𝑙(′𝑧′) 

>>  𝑠ℎ𝑎𝑑𝑖𝑛𝑔 𝑖𝑛𝑡𝑒𝑟𝑝 
>>  𝑐𝑜𝑙𝑜𝑟 𝑚𝑎𝑝(𝑔𝑟𝑎𝑦); 
 



Page 85 of 85 
 

 
Figure 3-13 A plot of the function using surfl 

This results in the impressive grayscale plot shown in Figure 3-13. The shading used in a plot can be 

set to flat, interp, or faceted.  

1. flat shading assigns a constant color value over a mesh region with hidden mesh lines. 

2. faceted shading adds the meshlines.  

3. interp tells OCTAVE to interpolate what the color value should be at each point so that a 

continuously varying color map or grayscale shading scheme is generated, as we considered 

in Figure 3-13.  

 

 

 

 

 

 

 

 

 


