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Abstract
Viral infection is a kind of cellular stress that leads to the changes in cellular metabolism. Many metabolic pathways in a 
host cell such as glycolysis, amino acid and nucleotide synthesis are altered following virus infection. Both oncogenic and 
non-oncogenic viruses depend on host cell glycolysis for their survival and pathogenesis. Recent studies have shown that the 
rate of glycolysis plays an important role in oncolysis as well by oncolytic therapeutic viruses. During infection, viral pro-
teins interact with various cellular glycolytic enzymes, and this interaction enhances the catalytic framework of the enzymes 
subsequently the glycolytic rate of the cell. Increased activity of glycolytic enzymes following their interaction with viral 
proteins is vital for replication and to counteract the inhibition of glycolysis caused by immune response. In this review, the 
importance of host cell glycolysis and the modulation of glycolysis by various viruses such as oncogenic, non-oncogenic 
and oncolytic viruses are presented.
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Introduction

Glycolysis is an energy generating glucose metabolic path-
way that occurs in cytosol of the cell. It is a ten-step reac-
tion pathway that converts one molecule of glucose to two 
molecules of pyruvate involving several intermediate steps. 
In the presence of oxygen formed, pyruvate enters the TCA 
cycle and gets completely oxidized to  CO2. In anaerobic con-
dition, formed pyruvate undergoes homolactic fermentation 
and leads to the formation of lactic acid. Aerobic glycolysis 
increases as an energy source in case of cancerous cells, i.e., 
even in the presence of oxygen, pyruvate forms lactate using 
enzyme lactate dehydrogenase which is known as Warburg 
effect., Glucose uptake gets increased in case of Warburg 
effect; cells utilize glucose for the production of macromol-
ecules and give rise to energy to fight against infection. This 
condition is advantageous to viruses, as they utilize the mac-
romolecules formed during increased glycolysis. Glucose, a 
large sized hydrophilic molecule which cannot enter through 
hydrophobic plasma membrane of the cell by simple diffu-
sion, specific carrier proteins, glucose transporters (GLUTs) 

are required for its transport. It can also enter into the cell 
via facilitated diffusion or by a secondary active transport. 
Secondary active transport occurs via sodium-dependent 
glucose co-transporters. These symporters co-transport glu-
cose with sodium ions. Twelve members of Sodium-glucose 
co-transporter(SGLT) family are found in humans [1].

GLUTs are a group of facilitative transporters that are 
present on cellular plasma membrane to transport glu-
cose across it. A total of 14 GLUT (1–14) members are 
divided into 3 classes on the basis of sequence homology 
and structural similarity; Class I (GLUT1 to GLUT4), 
Class II (GLUT5, GLUT7, GLUT9, GLUT11) and Class 
III (GLUT6, GLUT8, GLUT10, GLUT12). Among them, 
class I members are the well characterized group of glucose 
transporters. GLUT1 is a ubiquitously expressed glucose 
transporter with different degrees of expression in differ-
ent cell types. It is expressed in erythrocytes [2], fibroblasts 
[3], and in almost all tissues including brain tissue [4] and 
is responsible for basal glucose uptake. GLUT2 is present 
mainly in liver, pancreatic beta cells, intestine and kidney 
[5]. GLUT3 is mainly expressed in neurons, and in other 
cell types including sperm, WBCs, and carcinoma cell lines 
[6]. GLUT4 is insulin mediated glucose transporter found in 
adipose tissue, skeletal, and cardiac muscles [7]. Increased 
glucose uptake is not only an intrinsic feature of most of 
the cancers, but also is an attribute of virus infected cells. 
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Cancer cells depend on aerobic glycolysis for its uncon-
trolled, boundless growth and proliferation; however, under 
unfavorable conditions, various metabolic pathways are 
modulated for cell survival. In case of viral infections, many 
glycolytic enzymes contribute to the virus replication. On 
the other hand, some viral encoded proteins are likely to be 
facilitating the glucose uptake by increasing the expression 
of GLUTs through activated signaling pathways.

Although viruses have common metabolic requirements, 
still they use different strategies to alter different carbon met-
abolic pathways for establishing a successful infection in the 
host. Glucose requirement in the cell can be fulfilled during 
viral infection via increased glucose uptake from extracellu-
lar environment, and during glucose deprivation in the media 
there will be a shift towards other means/anabolic process 
like glycogenolysis to fulfill its requirement. The pathways 
that are regulated are virus and host specific; in some virus 
infections, it is seen that increased glucose uptake does not 
lead to enhanced glycolysis, rather it gets diverted to the 
formation of other nucleotide or amino acid metabolites. 
Glucose is an important carbon source for the production 
of amino acids, nucleotides and fatty acids. Metabolic path-
ways are interconnected and interdependent to maintain 
cellular homeostasis. Increased lipogenesis and nucleotide 
synthesis are also reported in association with some viruses 
[8]. Lipogenesis is mainly observed in cells infected with 
enveloped viruses to form the viral envelope [9]. Intermedi-
ates of glycolysis and the citric acid cycle can be removed at 
various stages and will be utilized to make other molecules. 
Metabolic pathways exist in highly regulated manner and 
they are not closed systems. Many substrates, intermediates, 
and products of one metabolic pathway are reactants in other 
metabolic pathways. In actively dividing cell, there is an 
increased demand for precursors for protein, nucleotide and 
lipid production in addition to ATP. Consequently, nutrient 
uptake is increased and metabolic intermediates are diverted 
from glycolysis and the TCA cycle to biosynthetic pathways. 
Apart from glycolysis, other pathways of glucose metabo-
lism will also be used by viruses to replicate adequately. The 
pentose phosphate pathway (PPP) is an important part of 
glycolysis which branches after first step of glycolysis also 
reported to be deregulated by viruses. Unlike, glycolysis it 
does not produce ATP, but produces Ribose 5-phsophate and 
NADPH for biosynthesis of nucleotides which are used by 
viruses for the replication of their genome [10, 11]. Like-
wise, TCA cycle, a metabolic energy pathway after glyco-
lysis has been reported to be modulated by viruses as it is 
needed for ATP production and biomolecule synthesis [12].

Mammalian cells use two carbon sources for energy pro-
duction; glucose and glutamine. Some viruses use both the 
carbon sources for efficient and optimal progeny production 
in host cells, but certain viruses depend on either of the car-
bon sources for their replication. Some like vaccinia virus 

depends on glutamine rather than glucose for its efficient 
replication thus not modulating glycolysis [13]. Modulation 
of glucose metabolism by viruses with an emphasis on vari-
ations between oncogenic and non-oncogenic viruses has 
been reviewed in this article.

Modulation of glucose uptake and glycolysis 
by viruses

Various metabolic pathways of the host can be modulated/
exploited by the virus for its efficient replication inside 
the host; however, which pathway gets regulated depends 
on the conditions that are optimal for its replication or for 
its beneficial outcome. Virus not only depends on these 
metabolic pathways, but also modifies them during infec-
tion process. Virus disrupts the metabolic regulation of the 
host cell, and mounts its own distinct metabolic program. 
Viral infection usually reprograms metabolic machinery of 
the host cell to hold or fulfill bioenergetic and biosynthetic 
requirement for its progeny production. In general, glyco-
lytic  metabolism is modulated by viruses by increasing glu-
cose uptake, and increased expression of various glucose 
transporters via recruiting signal transduction pathways. 
For example, expression of GLUT1 and GLUT4 proteins 
is increased in Adenovirus infected human primary skel-
etal muscle (HSKM) cells which increases glucose uptake 
via RAS activated PI3 kinase pathway [14]. Increased gly-
colysis through increased Akt signaling pathway was also 
reported in murine Norovirus which is independent of 
type 1 interferon response in infected macrophages [15]. 
Higher expression of EBV encoded Latent membrane pro-
tein (LMP-1) in Nasopharyngeal carcinoma (NPC) cells 
was reported to be involved in increased glycolysis. In this, 
activation of mTORC1 by LMP1 modulates NF-κB sign-
aling  which upregulates GLUT1 expression resulting in 
increased aerobic glycolysis in NPC cells [16]. Therefore, 
one of the therapeutic treatments of EBV-associated NPC 
is to target the signaling axis of mTORC1/NF-Kβ/Glut-1 
[17]. Similarly, another tumor virus, HPV encoded E6 and 
E7 proteins enhance the GLUT1 expression; however, via 
activation of HIF-1α in lung tumors. The correlated expres-
sion of HIF-1α, and GLUT1 was reported to be significantly 
high in malignant tumors as compared to benign tumor tis-
sues collected from patients [18]. On the contrary, some 
viruses quench glycolysis by activating certain signaling 
pathways under stress conditions. KSHV encoded microR-
NAs and vFLIP inhibits glycolysis to downregulate GLUT1 
and GLUT3 transporters by activating signaling pathway 
AKT and NF-kβ [19].

Another strategy of viruses to modulate glycolysis was 
reported to be through upregulation of glycolytic enzymes. 
Some viruses upregulate only one of the glycolytic enzymes, 
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while some two or more enzymes. Enzyme Activity is mod-
ulated by various components for e.g., Phosphofructokinase 
(PFK-1) is allosterically modulated by ATP [20], fructose 
2,6-bisphosphate [20, 21], citrate [22] or by its phosphoryla-
tion status [21, 22]. HSV induces glycolysis by increasing 
the glucose uptake, efflux of lactate level and ATP. It also 
increases the expression, and the activity of 6-phosphof-
ructo-1-kinase (PFK-1) [23]. Glucose transport is increased 
in virus infected cells by different mechanisms such as tran-
scriptional activation of transporter genes [24], stabiliza-
tion of transporters [25], and the increased translocation of 
transporters from intracellular vesicles to the plasma mem-
brane [26]. In Mayaro virus infected Vero cells, a two-fold 
increase in glucose consumption, lactate production, and 
increased PFK activity was reported which in turn leads 
to the increased glycolytic flux [27]. Likewise, in rhinovi-
rus infected cells increased glucose uptake is linked with  
increased expression of PI3K-regulated GLUT1 transporter 
[8].

Virus is very dynamic in nature, it modulates cellular 
metabolome and therefore enhances the glycolysis, but it 
may not be the case with all the viruses. Under stress con-
ditions, glycolysis is suppressed activating other metabolic 
pathways for optimal replication of some viruses [19]. Inter-
estingly, same virus may use different strategies during the 
establishment of infection in a host. One study reported 
induction of aerobic glycolysis in KSHV infected endothe-
lial cells, the phenomena which is called Warburg effect 
by increasing glucose uptake by GLUT3 transporter, and 
increased  lactate production. Expression of Hexokinase-2, 
the rate limiting enzyme of glucose metabolism was also 
reported to be increased in this study [28]. On the contrary, 
another study on KSHV reported induction of cellular 
transformation by suppressing aerobic glycolysis, and by 
downregulating glucose transporters, GLUT1 and GLUT3 
through the activation of AKT and NF-κB pro-survival 
pathways [19]. Some studies had shown that glucose trans-
porters function as cell surface receptors besides their role 
in glucose uptake. Glucose transporters interact with virus 
external surface proteins to facilitate virus entry into the host 
cell. Case in point, White Spot Syndrome Virus encoded 
envelope protein VP53A interacts with shrimp cell (i.e., host 
cell) surface receptor, GLUT1 for the entry of virus into the 
host cell [29, 30].

Why do viruses modulate glycolysis?

Glucose metabolism in a host cell is necessary for some 
viruses to replicate. Energy is required for its survival and for 
the synthesis of biomolecules required for virus replication. 
The energy for all these events comes through the alteration 
of host cell glycolysis and other metabolic pathways. Thus, 

inhibition of glycolysis blocks the replication of majority of 
viruses. The carbon metabolic alterations could either be a 
cellular response to virus infection or triggered by the virus 
itself to complete its life cycle. The shift in host cellular 
metabolism is required to cope up with the imbalance caused 
by virus infection. One of the reasons for increased glyco-
lysis during virus infection could be apoptosis, as cell death 
during virus replication induces disruption of mitochondrial 
membrane resulting in the inhibition of cellular respiration. 
To compensate this condition, glycolysis and other cellular 
metabolisms may be increased [31]. There are several types 
of inhibitors that are used to inhibit glycolysis which in turn 
inhibit viral life cycle. Glycolytic inhibitors generally result 
in mitochondrial pathway-induced apoptosis in cancerous 
cell [32, 33] which is similar to the condition observed in 
virus infected cells. Glycolytic enzyme inhibitors, glucose 
transporter inhibitors, ATP by allosteric inhibition, etc., are 
used to inhibit glycolysis. Reduction of viral RNA synthesis 
of Norovirus [15], and Dengue virus [34] following inhibi-
tion of glycolysis has been demonstrated using glycolysis 
inhibitors such as 2DG and Oxamate. Thus, glycolysis is 
an intrinsic host factor that is required for optimal replica-
tion of many viruses. Most of the above viruses had shown 
to be regulating a common strategy; that is increased gly-
colysis is always linked with increased glucose uptake and 
the increased expression of glucose transporters. However, 
some variations between oncogenic and non-oncogenic 
viruses were reported in the literature. Various viruses that 
are known to modulate host cell glycolysis and their possible 
regulatory mechanism are listed in Table 1.

Oncogenic viruses

Oncogenic viruses account for 11.9% of all human cancers, 
and are known to regulate various host metabolic pathways 
to maintain the oncogenic phenotype of transformed cells 
[35]. Cancer cells are mainly dependent on aerobic glyco-
lysis for their high energy demand which is considered as 
the hallmark of cancer [36, 37] Likewise, virus replication 
requires loads of energy, and resources from the host cell, 
therefore Warburg effect is essential in case of oncogenic 
virus infected cells for their survival [28]. Some cancer cells 
do utilize glutamine, amino acid or fatty acid metabolism for 
their proliferation and survival [38, 39]. As both the virus 
and the cancer cell have the ability to modify the rate of 
energy metabolism for the endless proliferation, it is likely 
that the mechanisms regulated by both have originated from 
a common mechanism [40]. Oncogenic viral proteins stimu-
late various oncogenic signaling pathways associated with 
energy metabolism and cell growth to promotes angiogen-
esis, and metastasis of viral infected/transformed cells [41]. 
GLUT1 had reported to be the main glucose transporter, 
transported to the membrane for the survival of cancerous 
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cells [42]. Translocation of GLUT1 to the plasma mem-
brane, and binding of PI3 kinase to middle T-pp60c−src leads 
to the increased uptake of glucose in polyoma virus trans-
formed cells [43]. In HCV infected cells, the direct correla-
tion between virus encoded NS5A protein, and the increased 
expression/activation of cellular hexokinase-2 result in 
intensification of glycolytic rate by increasing glucose 
uptake and lactate efflux [44]. Whereas in KSHV infected 
endothelial cells, mainly Akt and HIF signaling pathways 
appear to be playing a major role in Warburg effect [28]. 

However, induction of Warburg effect by KSHV is not uni-
versal but limited to endothelial cells [28]; while glycolytic 
inhibitors induce apoptosis in KSHV infected endothelial 
cells. Another study reported hyperactivation of PI3-K/Akt 
pathway, and GLUT1 translocation to the plasma membrane 
increases the oncogenic potential in KHSV infected THP-1 
cells [45]. These viral infected cells are more potent to death 
by glucose inhibitor, 2-DG in combination with bortezomib, 
an anti-cancer drug [45]. Under nutrient stress conditions, 
KSHV encoded miRNA and vFLIP genes promote cellular 

Table 1  Modulation of glucose metabolism by different viruses

HK2 Hexokinase-2, PDK1 Pyruvate dehydrogenase Kinase 1, G6-P Glucose -6- phosphate, GPI Glucose-6-phosphate isomerase, PFK Phospho-
fructokinase, PGK Phosphoglycerate Kinase, FBP Fructose-1,6-bisphosphate, ALD Aldolase, TPI Triose-phosphate isomerise, GAPDH Glycer-
aldehyde-3-phosphate dehydrogenase, ENO Enolase, PK Pyruvate kinase, PDH Pyruvate dehydrogenase, LDH Lactate dehydrogenase
*Indicates DNA virus
# Indicates RNA virus

S. No. Virus Signalling pathways 
recruited

Glycolytic enzymes 
regulated

Viral protein involved Increased 
expression of 
GLUTs

References

1 EBV* PI3-K, mTORC1/NF-kB
FGF2/FGFR1
pathway activity

HK2 LMP-1 GLUT1 [16, 17] 

2 HCV# Akt HK2 NS5A Unknown [44]
3 HPV* HIF-1α Not known E6/E7 GLUT1 [18]
4 KSHV* PI3K/Akt

NF-kB
HIF-1α
HIF-1

HK2
PKM2
PDK-1
HK2
PKM2

miRNA
vFLIP

GLUT1
GLUT3
GLUT1

[28, 45]
[19, 74]

5 Polyoma Virus* PI3K
Myc, NF-kB

HK2 Middle Tag
Small T Antigen

GLUT1
GLUT1
GLUT3

[43]

6 RSV# Unknown Unknown pp60src Unknown [75]
7 Dengue  virus# Unknown HK2 Unknown GLUT1 [34]
8 HCMV* Unknown HK2, GPI, PFK, TPI, 

PGK, ENO, PKM, PDH
Unknown GLUT4 [52, 53]

9 HSV* Unknown PFK-1 Unknown GLUT3 [23]
10 HIV# PI3K G6-P Unknown GLUT1

GLUT3
[58, 76]
[77, 78]

11 Influenza  Virus# HIF-1 HK2, PKM2, PDK3
HK2, GPI, PFK, FBP, 

ALD, TPI, GAPDH, PK, 
LDH

Unknown Unknown [31, 50]

12 Mayaro  virus# Unknown PFK Unknown Unknown [27]
13 SARS

CoV-2#
HIF-1 Unknown Unknown Unknown [56]

14 SFV# PI3K/Akt Unknown Unknown Unknown [79]
15 Vaccina Virus* HIF-1α Unknown Unknown Unknown [80]
16 Murine  Norovirus# Akt Unknown Unknown Unknown [15]
17 WSSV* Unknown Unknown VP53A

VP24, VP28, VP31, 
VP32, VP39B, VP51B, 
and VP53A

GLUT1
GLUT1

[29, 30]

18 Rhinovirus# PI3K Unknown Unknown GLUT1 [8]
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transformation, and suppresses aerobic glycolysis by activat-
ing NF-κβ signaling pathway to downregulate GLUT1 and 
GLUT3 transporter [19]. However, this paradox in KSHV 
infections is an important aspect to be investigated in detail.

Oncogenic viral proteins of Human Papilloma Virus, 
Murine Sarcoma Virus reported to be playing a regulatory 
role in inducing Warburg Effect, but the underlying mecha-
nism is yet to be understood [18, 46]. In NPC cells, stabiliza-
tion of transcriptional factor, c-Myc, and the transcriptional 
activation of Hexokinase-2 by EBV encoded LMP-1 medi-
ated signal pathway causes upregulation of glycolysis and 
the proliferation of cancerous cells [16]. LMP-1 also upregu-
lates the transcription of GLUT1 which enhances the aerobic 
glycolysis and the malignancy of the infected cells through 
mTORC1/NF-κB signaling pathway [17]. Studies on modu-
lated glucose metabolism mentioned above by oncogenic 
viruses approve that oncogenic virus infected cells develop 
different mechanisms such as activation of various signal-
ing pathways, increased cellular transporters, and increased 
nutrient uptake to sustain their high demand for energy. 
No studies have shown that cells are transformed due to 
increased glycolysis induced by oncogenic viruses. How-
ever, following transformation of cells by oncogenic viruses, 
viral proteins modulate glycolysis to meet the energy needs 
of proliferating cells.

Non‑oncogenic viruses

It is obvious that oncogenic virus infections lead to meta-
bolic alterations in the host cell because of their high energy 
demand. Interestingly, in non-transforming virus infected 
cells as well, glucose metabolism is altered. In case of 
Mayaro virus infected cells, increased glycolytic flux had 
been reported in association with increased glucose con-
sumption and lactate production by a significant increase 
in 6-phosphofructo-1- kinase enzyme activity in infected 
cell [27].

MDCK cells infected with H1N1 strain of influenza A 
virus show differential regulation of several enzyme activi-
ties of key metabolic pathways to compensate the metabolic 
imbalance caused by infection [47]. Influenza virus does 
modulate glycolysis but the exact mechanism is not clear. It 
our study, rate of glycolysis was observed to be increased in 
influenza A virus infected cells through increased expres-
sion of glucose transporters 1 and 4. Besides, there was an 
interplay between alpha enolase and pyruvate kinase activ-
ity with viral gene expression was also noted (unpublished 
data). Influenza virus replication is dependent on host cell 
glucose, and is in dose-dependent manner; treatment of 
infected cells with glycolytic inhibitors reduces virus rep-
lication [48]. While higher level of glucose increases the 
assembly, and the proton transport activity of Vacuolar type 
ATPase within the cells increase the viral replication [48]. 

Enhanced intracellular metabolite concentration of the upper 
part of glycolysis was reported in influenza virus infected 
cells following increased glucose uptake and lactate export 
[31]. One recent study reported upregulation of Hexoki-
nase-2, PKM2 and PDK3 enzymes of glycolytic pathway in 
A549 cells, and the mouse lung tissue following infection 
with H1N1 strain of influenza A virus. Earlier we reported, 
interaction of influenza A virus structural proteins M1 and 
NP with glycolytic enzymes; alpha enolase and pyruvate 
kinase [49]; however, the effect of this interaction on glyco-
lysis in infected cells needs to be investigated. HIF-1 path-
way, another pathway had shown to be critical for the tran-
scriptional activation of enzymes involved in glycolysis to 
support virus infection through increased glycolysis. Virus 
replication gets inhibited upon targeting HIF-1 pathway. 
This study also showed that the change of H1N1 replication 
upon glycolysis inhibition or enhancement is independent of 
interferon signaling [50].

Dengue virus, another non-oncogenic virus alters glyco-
lysis through increased glucose uptake by upregulation of 
GLUT1 transporter and the first enzyme of glycolysis i.e., 
hexokinase-2. While the inhibition of glycolytic pathway 
using glycolytic inhibitors halts the virus progeny production 
[34]. Adenovirus, although does not induce tumors in its nat-
ural host, encodes proteins with an ability to transform nor-
mal cells into cancerous in vitro. Adenovirus also reported 
to be modulating glucose uptake by increased expression 
of GLUT1, GLUT4 transporters, and the translocation of 
GLUT4 to the plasma membrane via Ras activated PI3Ki-
nase pathway in an insulin-independent manner [14]. Ade-
novirus infected primary cultures of cardiac myocytes, and 
H9c2 cells show upregulation of HIF-1α when subjected to 
hypoxia in the absence of glucose. On the contrary, addition 
of extracellular glucose to the medium resulted in decreased 
HIF-1α levels by almost 50% [51]. In consensus with the 
above results, adenovirus-induced overexpression of GLUT1 
in cardiac myocytes followed by hypoxia reduced the level 
of HIF-1α [51]. Another study reported the activation of 
transcriptional factor Myc, followed by Myc-dependent 
expression of glycolytic enzymes, Hexokinase-2 and PFKM 
by adenovirus encoded E4Orf1 protein promoting glucose 
uptake and increased glycolysis in infected cells [40].

Herpes Simplex Virus, also non-oncogenic in nature 
causes an increased glucose uptake, lactate secretion, and 
ATP content by elevating the expression and the activity 
of PFK-1enzyme. Its phosphorylation at serine residue was 
reported to be viral MOI dependent [23]. A prototype of 
beta-herpesvirus, HCMV also upregulates the level of meta-
bolic components involved in glycolysis, TCA cycle, and 
pyrimidine biosynthesis in fibroblasts [52]. HCMV encoded 
immediate early protein IE72 mediates the inhibition of 
GLUT1 level in infected cells [53], and the inhibition of 
GLUT1 results in Akt mediated translocation of GLUT4 
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onto the cell surface which leads to increased glucose 
uptake, subsequently increased glycolysis [54].

The ongoing pandemic virus, SARS CoV-2 infected 
patients had elevated blood glucose levels during the life 
cycle of the virus which might be providing optimal condi-
tions for the virus to replicate, and evade the host immune 
system [55]. One recent report showed that the increased 
glucose level, and the glycolysis promotes Monocytes infect-
ing SARS-CoV-2 replication through HIF-1α-dependent 
pathway, while the treatment of cells with 2-Deoxy-d-glu-
cose (2-DG), a glycolytic inhibitor blocked viral replica-
tion [56]. Thus, the drug 2-DG was used as an anti-viral 
and anti-inflammatory drug to combat the cytokine storm in 
COVID-19 patients [57]. All the above reports collectively 
suggest that most of the viruses irrespective of their genome 
nature, and oncogenic potential, modulate glucose uptake 
and glycolysis for successful replication in a host.

Considering different cells types, viruses have been 
reported to be regulating glucose metabolic pathways in dif-
ferent cell types such as immune cells, glioma cells, fibro-
blasts as well. The modulation of glycolysis by viruses in 
these cells are more or less similar to cancer cells; either 
by increasing proliferative pathways or increased expression 
and activity of glycolytic enzymes. Elevated level of Glut1 

expression in CD4 + T cells contributes to increased glucose 
transport and increased glycolysis in HIV infected cells [58]. 
HHV-6 infection was found to promote glucose metabolism 
in T cells leading to increased glucose uptake, glucose con-
sumption and lactate secretion through increased expres-
sion of major glucose transporters and glycolytic enzymes. 
Activated AKT-mTORC1 signaling was also reported in 
HHV-6A infected cells, while inhibition of mTORC1 sig-
nal pathway blocked HHV-6A mediated glycolytic pathway 
subsequently viral DNA replication, protein synthesis and 
progeny production which suggests an interplay between 
above mentioned signal pathways with glycolysis in HHV-
6A infected immune cells [59]. Stimulation of glycolysis in 
glioma cell lines was reported through upregulation of key 
glycolytic enzymes hexokinase, GAPDH and alpha enolase 
by HIV glycoprotein gp120. It led to increased activity of 
pyruvate kinase and pyruvate synthesis [60]. Overview of 
glucose uptake and glycolysis regulation in oncogenic and 
non-oncogenic viruses is shown in Fig. 1.

Oncolytic viruses

Cancer cells are rapidly dividing cells, and depend more 
on glucose than the normal cells do for ATP generation via 

Fig. 1  Overview of glucose uptake and glycolysis in virus infected 
cells. Figure shows various viruses and their proteins involved 
in induction of increased glycolysis in infected cells by modulat-

ing mechanisms such as deregulation of signal pathways to induce 
increased expression of glucose transporters and specific glycolytic 
enzymes. Created with Biorender.com
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glycolysis. An aerobic glycolysis is the principal metabolic 
pathway in cancerous cells, targeting it is the main approach 
to inhibit cancer cell progression. Viral demand of macro-
molecule synthesis is similar to cancerous cells. In most 
viral infected, normal and cancerous cells, glycolysis and 
uptake of glucose get intensified the use of glycolytic inhibi-
tors results in oncolysis by many viruses [28, 61–63].

As cancer is a complex disease, it demands an effective 
way of treatment. In the recent past, trials on developing 
a targeted therapy to lyse cancer cells using virus gaining 
much interest in the field of cancer therapeutics. Oncolytic 
virus has an ability to selectively kill cancer cells leaving the 
normal cells unharmed. Oncolytic viruses work as cancer 
therapeutics by two major mechanisms; direct lysis or by 
triggering anti-cancerous immune response. Energy meta-
bolic pathway plays a main role in both the cases to report 
the outcome of oncolytic virus mediated cell lysis. Oncolytic 
viruses hijack the host cellular metabolic pathways that are 
necessary for viral replication which results in oncolysis 
[64]; it is also reported that by targeting the glycolytic path-
way of cancer cell through glycolytic inhibitors may enhance 
the oncolytic virotherapy activity in cancer cells [65].

New Castle Disease virus (NDV), a natural tumor tropic 
virus with oncolytic ability downregulates glycolytic 
enzyme PGK [66]. Glucose analog, 2-DG, an anti-metabo-
lite of cancer cell inhibits the glucose metabolism of cancer 
cells more effectively in combination with oncolytic NDV 
to inhibit the tumor growth/ increased cytotoxicity in breast 
cancer cells through GAPDH downregulation as compared 
to monotherapy [63]. Another study showed that downregu-
lation of hexokinase via d-Mannoheptulose, a non- metabo-
lize analog of glucose [67, 68], and the use of hexokinase 
inhibitor combined with NDV infection inhibits glycolysis 
which in turn induces apoptosis in breast cancer cell line 
efficiently in comparison to either of the agents administered 
alone [69]. Dichloroacetate which is a mitochondrial pyru-
vate dehydrogenase kinase inhibitor reported to increase the 
NDV-mediated viro-immunotherapy in Hepatocellular carci-
noma by enhancing anti-tumor immune response, and viral 
replication [70]. Lytic potential of M1 virus, a novel onco-
lytic virus shows its dependence on glycolysis. It had been 
shown that increased viral replication, and oncolysis is inde-
pendent of Hexokinase-2 using lonidamine, a hexokinase 
inhibitor. However, enhanced viral replication, and oncolysis 
is mediated by downregulation of Myc, an antiviral immune 
response factor, and by upregulation of ER stress mediated 
apoptosis. On the contrary, glycolytic inhibitor, 2-DG (glu-
cose analog) in combination with M1 virus not only inhib-
ited the virus replication, but the oncolysis as well [71]. 
From the above studies, it is evident that virus replication, 
and cancer cell destruction by therapeutic viruses do require 
modulation of glycolysis. However, oncolytic virus asso-
ciated host cell glycolysis needs to be elucidated in detail 

for developing anti-tumor drugs targeting Warburg effect 
in combination with oncolytic viro-therapeutics. The first 
Chinese SFDA approved Oncolytic-based therapy, Oncorine, 
a recombinant human adenovirus type 5 was approved for 
clinical use in 2005 against NPC [72]. In 2015, a modified 
Herpes Simplex Virus, talimogene laherparepvec (T-Vec), 
the first FDA approved oncolytic virus in United States and 
Europe were acclaimed for clinical use against metastatic 
melanoma [73]. Oncolytic virotherapy combined with met-
abolic interventions that work together may enhance the 
potential of virus-based cancer therapeutics.

Conclusion

A wide variety of viruses; both DNA and RNA viruses, 
oncogenic and non-oncogenic viruses evolved various strate-
gies to exploit the host cellular metabolic network especially 
glycolysis during infection. The importance of glycolysis in 
promoting replication of various viruses is gaining interest 
in the recent past. Some viral proteins have been reported to 
be directly involved in modulating glycolysis either through 
interacting with rate limiting enzymes of glycolysis or by 
upregulation/activation of these enzymes in infected cell. 
Signal pathways that are involved in upregulation of glucose 
transporters for increased glucose uptake are also reported 
in cells infected with certain viruses. However, increased 
glycolysis in association with some viruses was reported 
with no information on signal pathways recruited, glycolytic 
enzymes regulated and glucose transporters expression. Fur-
thermore, the studies on modulation of glycolysis by onco-
lytic viruses are very limited, but had shown to be repro-
graming the host cell glucose metabolism during oncolysis. 
Considering the importance of glycolysis in virus infected 
cells, in addition to targeting viral proteins for the develop-
ment of anti-viral therapeutics, alternative ways of targeting 
host factors such as the dependency of viral replication on 
cellular metabolic pathways may also be explored to develop 
effective therapeutics. Glycolytic enzyme inhibition can 
cause ATP depletion, making cancer cells to get insufficient 
energy for proliferation which in turn leads to apoptosis. 
Thus, the use of glycolytic enzyme inhibitors against onco-
genic viral infections may provide treatment for tumor sup-
pression as well. As the regulation of metabolic pathways 
control the fate of the cell subsequently virus infection, the 
transient inhibition of the desired metabolic pathway can 
be a novel therapeutic approach to reduce/inhibit the active 
viral replication.
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