
Page 1 of 20

MTE201 C Programming Basics

Page 2 of 20

COURSE SYNOPSES

C Programming: Introductory concepts, C fundamentals, operators and expression,

data input and output, preparing and running a complete C program, control

statements, functions, program structure, arrays, pointers, structures and unions, data

files and low level programming. Advanced C Programming: Control statements,

functions, program structure, arrays, pointers, structures and unions, data files and

low level programming.

Page 3 of 20

1.0. History of C

The C programming language was pioneered by Dennis Ritchie at AT&T Bell

Laboratories in the early 1972. The language was formalized in 1988 by the

American National Standard Institute (ANSI). It was not until the late 1970s, houser

ver, that this programming language began to gain widespread popularity and

support. This was because until that time C compilers user re not readily available for

commercial use outside of Bell Laboratories. C is a general-purpose programming

language, and is used for writing programs in many different domains, such as

operating systems, numerical computing, graphical applications, etc. It is a small

language, with just 32 keywords. It provides “high-level” structured programming

constructs such as statement grouping, decision making, and looping, as user ll as “low

level” capabilities such as the ability to manipulate bytes and addresses.

1.1. Programming

Computers are really very dumb machines indeed because they do as instruct by the

user. To solve a problem using a computer, you must express the solution to the

problem in terms of the instructions of the particular computer. A computer program

is just a collection of the instructions necessary to solve a specific problem. The

approach or method that is used to solve the problem is known as an algorithm.

Normally, to develop a program to solve a particular problem, you first express the

solution to the problem in terms of an algorithm and then develop a program that

implements that algorithm. So, the algorithm for solving the even/odd problem might

be expressed as follows: First, divide the number by two. If the remainder of the

division is zero, the number is even; otherwise, the number is odd. With the algorithm

in hand, you can then proceed to write the instructions necessary to implement the

algorithm on a particular computer system. These instructions would be expressed in

the statements of a particular computer language, such as Visual Basic, Java, C++,

or C.

1.2. Operating Systems

An operating system is a program that controls the entire operation of a computer

system. All input and output (that is, I/O) operations that are performed on a

computer system are channeled through the operating system. One of the most

popular operating systems today is the Unix operating system, which was developed

at Bell Laboratories. Unix is a rather unique operating system in that it can be found

on many different types of computer systems, and in different “flavors,” such as Linux

or Mac OS X.

Page 4 of 20

1.3. The C Compiler

A compiler analyzes a program developed in a particular computer language and

then translates it into a form that is suitable for execution on your particular computer

system. The source code written in source file is the human readable source for your

program. It needs to be "compiled" into machine language so that your CPU can

actually execute the program as per the instructions given. The compiler compiles the

source codes into final executable programs. The most frequently used and free

available compiler is the GNU C/C++ compiler, otherwise you can have compilers

either from HP or Solaris if you have the respective operating systems.

1.4. Integrated Development Environments (IDE)

This process of editing, compiling, running, and debugging programs is often

managed by a single integrated application known as an Integrated Development

Environment, or IDE for short. An IDE is a windows-based program that allows you to

easily manage large software programs, edit files in windows, and compile, link, run,

and debug your programs.

1.5. Touring the Code::Blocks workspace

Figure 1 illustrates the Code::Blocks workspace, which is the official name of the

massive mosaic of windows you see on the screen. The details in Figure 1 are rather

small, but what you need to find are the main areas, which are called out in the figure:

1. Toolbars: These messy strips, adorned with various command buttons,

cling to the top of the Code::Blocks window. There are eight toolbars,

which you can rearrange, show, or hide. Don’t mess with them until you

get comfy with the interface.

2. Management: The window on the left side of the workspace features

four tabs, though you may not see all four at one time. The window

provides a handy oversight of your programming endeavors.

3. Status bar: At the bottom of the screen, you see information about the

project and editor and about other activities that take place in

Code::Blocks .

4. Editor: The big window in the center-right area of the screen is where

you type code.

Page 5 of 20

5. Logs: The bottom of the screen features a window with many, many tabs.

Each tab displays information about your programming projects. The

tab you use most often is named Build Log.

Figure 1 The Code::Blocks workspace.

1.6. Creating a new project

1. Start Code::Blocks . You see the Start Here screen, which displays the

Code::Blocks logo and a few links. If you don’t see the Start Here screen,

choose File➪Close workspace.

2. Click the Create a New Project link. The New from Template dialog box

appears, as shown in Figure 2.

3. Choose Console Application and then click the Go button. The Console

Application Wizard appears. You can place a check mark by the item

Skip This Page Next Time to skip over the wizard’s first screen.

4. Click the Next button.

5. Choose C as the language you want to use, and then click the Next

button. C is quite different from C++ — you can do things in one

language that aren’t allouser d in the other.

Page 6 of 20

Figure 2 New projects

6. Type MTE201_01 as the project title. When you set the project title, the

project’s filename is automatically filled in.

7. Click the ... (Browse) button to the right of the text box titled Folder to

Create Project In. I recommend that you create and use a special folder

for all projects in this book.

8. Use the Make New Folder button in the Browse for Folder dialog box

to create a project folder.

9. Click the OK button to select the folder and close the dialog box.

10. Click the Next button. The next screen (the last one) allows you to select

a compiler and choose whether to create Debug or Release versions of

your code, or both. The compiler selection is fine; the GNU GCC Compiler

(or whatever is shown in the window) is the one you want.

11. Remove the check mark by Create Debug Configuration. You create this

configuration only when you need to debug, or fix, a programming

predicament that puzzles you.

12. Click the Finish button.

1.7. Features of C language

1. High level language: it is written in user understandable language making it

user friendly and easy to comprehend.

2. Structured language: it improves clarity, quality and it reduces the develop

time for designing a programming software

Page 7 of 20

3. Rich library: it has its own library which includes most of the arithmetic and logic

operation which are predefined. The user only includes the needed library in

the code and their functionality can be executed without having to code them

separately.

4. Extensibility: programs written in C language are highly extensible.

5. Recursion: this prevent the writing of the same function multiply times. Instead

whenever the user needs the function user just have to call it. This help to reduce

the time involved in the development cycle and also improves the code

functionality.

6. Pointers: using the pointers user can directly interact with the physical memory

of the computer system.

7. Faster execution: program execution is faster in C language than its

predecessors.

8. Memory management: C language offers many functions where user can

dynamically and directly interact with the memory of the computer system.

1.7.1. C-Tokens

Figure 3 presents the C-tokens in C programming language.

Figure 3 C-Tokens

Keywords: variables having specified meaning and are predefined in C library. Such

as main, for, if, else etc. Keywords cannot be renamed or reprogramed. Figure 4

shows the 32 keywords in C language.

Page 8 of 20

Figure 4 The 32 keywords in C language

Constants: sometimes refer to as literals are like variables, but unlike variables once

they are declared their values cannot be changed. The syntax is:

const data_type variable_name;

 Or

const data_type*variable_name;

Types of Constants in C language

1. Integer constants

2. Floating point constants

3. Character constants

4. String constants

5. Octal and Hexadecimal constants

Strings: these are collection of characters defined in form of an array and end with

null character which describes the end of the string to the compiler. The syntax is:

char string_name[Length_of_the_string]

In strings we have alphabetical data meaning (A - Z) which is stored in form of arrays.

Identifiers: this are names declared in the program in order to name a value, variable

function, array etc. The syntax is:

Page 9 of 20

int x = 10;

In the above, x is the identifier and the value stored is 10. The keyword is int; this is

the data type specified for the identifier x. meaning the value is an integer.

Rules for declaring an identifier

1. First character should be an alphabet or underscore.

2. Succeeding character can be digits or letters.

3. Special characters are not allowed except underscore.

4. Identifiers should not be keyword.

Special Symbols or Characters: this can be single character or sequence of characters

having a special built-in meaning in language and typically cannot be used as

identifiers. Such as: &, %, # etc. These special characters have meanings which are

predefined in C library when designing the language, these is why they are used in

particular segment of the code. For instance, the & is only used in printif and scanner

statement, the % is used to specify the data type (integer data type %d, spring data

type %S)

Operators: The following are the operators in C language

1. Arithmetic operators: these are used to perform mathematical operations. Such

as addition, subtraction, multiplication and modulus.

Page 10 of 20

2. Increment/decrement operators: These operators are used when loops are

included in the program. Increment operators are use to increase the value of

a variable by a specific number. Decrement operators are use to decrease

the value of a variable by a specific number.

Page 11 of 20

Example:

i++; // increment

i--; // decrement

3. Assignment operators: These operators are used to assign values to variable

in C language.

Example

=, ==

int b = 4;
4. Bitwise operators: These operators are used to perform bit operations. Decimal

values are converted into binary values which are the sequence of bits and bit

wise operators work on these bits.

Bit wise operators in C language are:

& (bitwise AND)

| (bitwise OR)

~ (bitwise NOT)

^ (XOR)

<< (left shift)

>> (right shift)

5. Relational operators: These operators are used to test or define relation

between two entities or variables.

Example

<, >, =, !=,

If (a=<b);

6. Logical operators: These operators are used to perform logical operation on

a given expressions. There are three logical operators in C language:

Logic AND (&&)

Logic OR (||)

Logic NOT (!)

1.8. Datatype and Variable Used in C Programming Language

1.8.1. Datatype

There are four datatypes in C language:

1. Basic datatype

2. Derived datatype

Page 12 of 20

3. Enumeration datatype

4. Void datatype

 Table 1 presents these datatype examples

1.8.2. Variable

Variables are defined as the reserved memory space which stores value of a definite

datatype. The value of the variable is not constant, so it can be changed. The types

of variables in C language are:

1. Local variable: these variables are declared inside a code block or a function

and has it scope limited to that particular block of code or function.

In the figure above, the function test is defined and a local variable with int

datatype is declare within the function.

2. Global variable: these variables are declared outside a code block or a

function and has it scope across the entire program and allow any function to

change it value.

Page 13 of 20

In the figure above, the function test is defined and a global variable with int

datatype is declare outside the function.

3. Static variable: any variable declared with the keyword static is known as

static variable. These variables retain their declared value throughout the

entire execution of the program and will not be changed between multiple

function calls.

4. External variable: These variables are declared by using the keyword extern.

A variable can be share between multiple C source file by using external

variable.

Example

extern int extern = 10;//(External Variable)

5. Automatic variable: These variables can be declared by using the keyword

auto. By default, all the variables define in C language are Automatic

Variable.

Page 14 of 20

Rules for declaring a Variable

1. A variable can have alphabet, digit and underscore.

2. A variable name can start with alphabet and underscore only.

3. No spacing is allowed within the variable name.

4. A variable name must not be any reserve word or keyword.

Page 15 of 20

2.0. PREPROCESSOR DIRECTIVES

These are lines included in a program that begin with the character #, which

distinguish them from a typical source code text. They are invoked by the complier to

process some programs before compilation. It is a macro processor used

automatically by the C compiler to transform user program before actual compilation.

For instance, stdio.h, means standard input/output; this preprocessor directive

activates the input and output unit to perform a C programming operation.

The operating sequence of the preprocessor directive is shown below:

Types of Preprocessor Directives in C Language

1. #include: this used to paste code of given file into current file. It is used include

system defined and user defined header files. There are two variants to use

the #include directive:

#include <filename>

#include “filename”

2. #define: this is used to define constant or macro substitution. It can use any

basic datatype. Syntax is #define token value.

3. #undef: is used to undefine the constant or macro defined by #define. The

syntax is #undef token

4. #ifdef

5. #ifndef

6. #else

7. #error

Page 16 of 20

8. #pragma

2.1. Control statements

These statements enable user to specify the flow of program control. They specify the

order in which the instruction in a program must be executed. They make it possible

to make decisions, to perform tasks repeatedly or jump from one section of the code

to another.

The variants of the control statements in C language are:

1. If statement

2. If-else statement

3. If-else ladder

4. Nested if

5. Switch

6. Ternary

7. Break

2.1.1. If control statement

The if statement in C language is defined as a programming conditional statement

that, if proved true, it performs an operation or displays information inside the

statement block.

This can be explained using the flow chart

Page 17 of 20

For better understanding let write the code:

Page 18 of 20

2.1.2. If-else control statement

This control statement defines a programming conditional statement that has two

statement blocks over a condition. If proved true, then the if block is executed and if

false, then the else block is executed.

This can be explained using the flow chart

For better understanding let write the code:

Page 19 of 20

2.1.3. If-else ladder Control Statement

This control statement defines a programming conditional statement that has multiple

else-if statement blocks. If any of the condition is true, then the control will exit the

else-if ladder and execute the next set of statements.

This can be explained using the flow chart

Page 20 of 20

For better understanding let write the code:

